A229181 Number of decimal digits in the variant of A047777(n) (decimal expansion of Pi cut in "prime chunks") without the restriction that all primes must be different.
1, 5, 1, 3, 1, 2, 1, 4, 3057, 1, 1, 3, 1, 1, 748, 2, 2, 1, 2, 83, 5, 1, 2, 71, 10, 1, 1, 2, 2, 2, 1, 1, 3, 1, 14, 2, 5, 51, 1, 6, 1, 6, 3, 2, 9, 1, 16, 2, 3, 43, 1, 6, 19, 1, 5, 3, 1999, 1, 1, 2, 22, 1, 3, 1, 2, 2, 1, 2, 2, 5, 1, 1, 1, 1, 4, 1, 1, 3, 7, 5, 1, 6, 4, 3, 1, 10, 7, 1, 2, 11, 2, 5, 1, 13, 1, 20, 16, 1, 9, 16
Offset: 1
Links
- C. Rivera, Prime strings
Programs
-
Mathematica
A229181 = {1}; digits = Join[{{1}}, RealDigits[Pi, 10, 10^4] // First // Rest]; digits //. {a:({A229181,%20lg%5D;%20%7B%7B1%7D,%20c%7D)%20;%20A229181%20(*%20_Jean-Fran%C3%A7ois%20Alcover">Integer..}..), b__Integer /; PrimeQ[FromDigits[{b}]], c___Integer} :> (Print[lg = {b} // Length]; AppendTo[A229181, lg]; {{1}, c}) ; A229181 (* _Jean-François Alcover, Oct 17 2013 *)
-
PARI
default(realprecision,5000);c=Pi/10;u=[];for(k=1,9e9,ispseudoprime(c\.1^k) & !print1(k,",") & k=0*c=frac(c*10^k))
Extensions
More terms from Jean-François Alcover, Oct 17 2013
Comments