cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229194 Integers nearest to (2^((n-3)/2) + 3^((n-3)/2)).

Original entry on oeis.org

1, 1, 1, 2, 3, 5, 8, 13, 21, 35, 58, 97, 163, 275, 466, 793, 1353, 2315, 3969, 6817, 11726, 20195, 34816, 60073, 103724, 179195, 309724, 535537, 926275, 1602515, 2773034, 4799353, 8307516, 14381675, 24899377, 43112257, 74651790, 129271235, 223862687, 387682633, 671402698, 1162785755, 2013837368, 3487832977, 6040770648, 10462450355, 18120829034, 31385253913, 54359521280, 94151567435, 163072632198
Offset: 0

Views

Author

Vladimir Pletser, Sep 15 2013

Keywords

Comments

This sequence illustrates the second law of small numbers because it is a coincidence that the terms for 1 <= n <= 8 are the same as the Fibonacci numbers F(n) (A000045): a(n) = F(n) for 1 <= n <= 8.
Furthermore, the following terms are the sum of two Fibonacci numbers: a(9) = F(9) + F(2), a(10) = F(10) + F(4), a(11) = F(11) + F(6), a(14) = F(14) + F(11); or the algebraic sum of three Fibonacci numbers: a(12) = F(12) + F(8) - F(3), a(13) = F(13) + F(10) - F(7), a(14) = F(14) + F(12) - F(10), a(18) = F(19) - F(13) - F(8), a(19) = F(20) + F(10) - F(4); or the algebraic sum of four Fibonacci numbers: a(15) = F(15) + F(12) + F(9) + F(5), a(16) = F(16) + F(14) - F(6) - F(4), a(17) = F(18) - F(13) - F(9) - F(3), a(18) = F(18) + F(16) + F(14) + F(8), a(19) = F(19) + F(18) + F(10) - F(3).
Note that, for following values of n, a(n) > F(n+1) for n >= 20.
Remark as well that (2^(1/2) + 3^(1/2)) = 3.14626437... ~= Pi (see A135611).

References

  • T. Koshy, Fibonacci and Lucas Numbers with Applications, New York, Wiley-Interscience, 2001
  • I. Stewart, L'univers des nombres, Belin-Pour La Science, Paris 2000.

Crossrefs

Programs

  • Magma
    [Round(2^((n-3)/2) + 3^((n-3)/2)): n in [0..50]]; // Vincenzo Librandi, Sep 20 2013
  • Maple
    seq(round(2^((n-3)/2)+3^((n-3)/2)), n=0..50);
  • Mathematica
    Table[Round[2^((n - 3)/2) + 3^((n - 3)/2)], {n, 0, 50}] (* Vincenzo Librandi, Sep 20 2013 *)

Formula

a(n) = round(2^((n-3)/2) + 3^((n-3)/2)).