cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229216 If 1, 2, and 3 represent the three 2D vectors (1,0), (0.5,sqrt(3)) and (-0.5,sqrt(3)) and -1, -2 and -3 are the negation of these vectors, then this sequence represents Koch's snowflake.

Original entry on oeis.org

1, -3, 2, 1, -3, -2, 1, -3, 2, 1, 3, 2, 1, -3, 2, 1, -3, -2, 1, -3, -2, -1, -3, -2, 1, -3, 2, 1, -3, -2, 1, -3, 2, 1, 3, 2, 1, -3, 2, 1, 3, 2, -1, 3, 2, 1, 3, 2, 1, -3, 2, 1, -3, -2, 1, -3, 2, 1, 3, 2, 1, -3, 2, 1, 3, 2, -1, 3, 2, 1, 3, 2, -1, 3, -2, -1, 3, 2, -1, 3, 2, 1, 3, 2, 1, -3, 2, 1, 3, 2, -1, 3, 2, 1, 3, 2, -1, 3, -2, -1, 3, 2, -1, 3, -2, -1, -3, -2, -1
Offset: 1

Views

Author

Arie Bos, Sep 25 2013

Keywords

Comments

The sequence is generated by:
P(1) = 1,-3,2,1,
P(2) = 2,1,3,2,
P(3) = 3,2,-1,3,
P(-1) = -1,3,-2,-1,
P(-2) = -2,-1,-3,-2,
P(-3) = -3,-2,1,-3 (we have P(-x)=-P(x)), and 1, 3, -2 is the start.

Examples

			Start 1,3,-2,
in the first step 1,-3,2,1,3,2,-1,3,-2,-1,-3,-2 and
in the second step 1, -3, 2, 1, -3, -2, 1, -3, 2, 1, 3, 2, ..., -2, -1, -3, -2.
With each step the length increases by a factor 4.
		

Crossrefs

Cf. A229217.