A229216 If 1, 2, and 3 represent the three 2D vectors (1,0), (0.5,sqrt(3)) and (-0.5,sqrt(3)) and -1, -2 and -3 are the negation of these vectors, then this sequence represents Koch's snowflake.
1, -3, 2, 1, -3, -2, 1, -3, 2, 1, 3, 2, 1, -3, 2, 1, -3, -2, 1, -3, -2, -1, -3, -2, 1, -3, 2, 1, -3, -2, 1, -3, 2, 1, 3, 2, 1, -3, 2, 1, 3, 2, -1, 3, 2, 1, 3, 2, 1, -3, 2, 1, -3, -2, 1, -3, 2, 1, 3, 2, 1, -3, 2, 1, 3, 2, -1, 3, 2, 1, 3, 2, -1, 3, -2, -1, 3, 2, -1, 3, 2, 1, 3, 2, 1, -3, 2, 1, 3, 2, -1, 3, 2, 1, 3, 2, -1, 3, -2, -1, 3, 2, -1, 3, -2, -1, -3, -2, -1
Offset: 1
Examples
Start 1,3,-2, in the first step 1,-3,2,1,3,2,-1,3,-2,-1,-3,-2 and in the second step 1, -3, 2, 1, -3, -2, 1, -3, 2, 1, 3, 2, ..., -2, -1, -3, -2. With each step the length increases by a factor 4.
Links
- Arie Bos, Index notation of grid graphs, arXiv:1210.7123 [cs.CG], 2012.
- Skylyn Irby, Sandra Spiroff, On conditionally defined Fibonacci and Lucas sequences and periodicity, Bull. Korean Math. Soc. (2020) Vol. 57, No. 4, 1033-1048.
- Wikipedia, Koch snowflake
Crossrefs
Cf. A229217.
Comments