A229217 If 1 and 2 represent the 2D vectors (1,0) and (0,1) and -1 and -2 are the negation of these vectors, then this sequence represents the Koch curve.
1, 2, 1, -2, 1, 2, -1, 2, 1, 2, 1, 2, 1, -2, 1, -2, 1, -2, -1, -2, 1, 2, 1, -2, 1, 2, -1, 2, 1, 2, -1, -2, -1, 2, -1, 2, -1, 2, 1, 2, 1, 2, 1, -2, 1, 2, -1, 2, 1, 2, 1, 2, 1, -2, 1, 2, -1, 2, 1, 2, 1, 2, 1, -2, 1, -2, 1, -2, -1, -2, 1, 2, 1, -2, 1, -2, 1, -2, -1, -2, 1, 2, 1, -2, 1, -2, 1, -2, -1, -2, -1, -2, -1, 2, -1, -2, 1, -2, -1, -2, 1, 2, 1, -2, 1, 2, -1
Offset: 1
Keywords
Examples
Start with 1, you get in the first step 1,2,1,-2,1, and in the 2nd step 1,2,1,-2,1,2,-1,2,1,2,1,2,1,-2,1,-2,1,-2,-1,-2,1,2,1,-2,1. With each step the length increases by a factor 5.
Links
- Arie Bos, Index notation of grid graphs, arXiv:1210.7123 [cs.CG], 2012.
- Wikipedia, Koch curve
- Index entries for sequences that are fixed points of mappings
Comments