A229224 The partition function G(n,7).
1, 1, 2, 5, 15, 52, 203, 877, 4139, 21137, 115874, 677623, 4204927, 27565188, 190168577, 1376119903, 10414950785, 82230347149, 675762947626, 5768465148493, 51054457464731, 467728049807348, 4428770289719931, 43281554035140829, 436015324638219779
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
G:= proc(n, k) option remember; local j; if k>n then G(n, n) elif n=0 then 1 elif k<1 then 0 else G(n-k, k); for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi end: a:= n-> G(n, 7): seq(a(n), n=0..30); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add( a(n-i)*binomial(n-1, i-1), i=1..min(n, 7))) end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 22 2016
-
Mathematica
CoefficientList[Exp[Sum[x^j/j!, {j, 1, 7}]] + O[x]^25, x]*Range[0, 24]! (* Jean-François Alcover, May 21 2018 *)
Formula
E.g.f.: exp(Sum_{j=1..7} x^j/j!).
Comments