A229225 The partition function G(n,8).
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115964, 678448, 4212352, 27632112, 190778186, 1381763398, 10468226150, 82744297014, 680835331228, 5819712427654, 51584619782546, 473344099095848, 4489677962922186, 43957668431564086, 443694809361207824
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
G:= proc(n, k) option remember; local j; if k>n then G(n, n) elif n=0 then 1 elif k<1 then 0 else G(n-k, k); for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi end: a:= n-> G(n, 8): seq(a(n), n=0..30); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add( a(n-i)*binomial(n-1, i-1), i=1..min(n, 8))) end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 22 2016
-
Mathematica
CoefficientList[Exp[Sum[x^j/j!, {j, 1, 8}]] + O[x]^25, x]*Range[0, 24]! (* Jean-François Alcover, May 21 2018 *)
Formula
E.g.f.: exp(Sum_{j=1..8} x^j/j!).
Comments