A229227 The partition function G(n,10).
1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678569, 4213584, 27644267, 190897305, 1382935569, 10479884654, 82861996310, 682044632178, 5832378929502, 51720008131148, 474821737584174, 4506150050048604, 44145239041717738, 445876518513670356
Offset: 0
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..500
Programs
-
Maple
G:= proc(n, k) option remember; local j; if k>n then G(n, n) elif n=0 then 1 elif k<1 then 0 else G(n-k, k); for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi end: a:= n-> G(n, 10): seq(a(n), n=0..30); # second Maple program: a:= proc(n) option remember; `if`(n=0, 1, add( a(n-i)*binomial(n-1, i-1), i=1..min(n, 10))) end: seq(a(n), n=0..30); # Alois P. Heinz, Sep 22 2016
-
Mathematica
CoefficientList[Exp[Sum[x^j/j!, {j, 1, 10}]] + O[x]^25, x]*Range[0, 24]! (* Jean-François Alcover, May 21 2018 *)
Formula
E.g.f.: exp(Sum_{j=1..10} x^j/j!).
Comments