cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229247 Number of set partitions of {1,...,n} with largest set of size 5.

Original entry on oeis.org

1, 6, 42, 280, 1890, 12978, 91938, 671616, 5064345, 39439400, 317158842, 2631497232, 22512271964, 198412838820, 1800062132940, 16795556650200, 161038724157045, 1585408383273330, 16013462706719170, 165819496710741720, 1759058150311036806, 19103856738729254206
Offset: 5

Views

Author

Alois P. Heinz, Sep 17 2013

Keywords

Crossrefs

Column k=5 of A080510.

Programs

  • Maple
    G:= proc(n, k) option remember; local j; if k>n then G(n, n)
          elif n=0 then 1 elif k<1 then 0 else G(n-k, k);
          for j from k-1 to 1 by -1 do %*(n-j)/j +G(n-j, k) od; % fi
        end:
    a:= n-> G(n,5)-G(n,4):
    seq(a(n), n=5..30);
  • Mathematica
    nmin = size = 5; nmax = 30;
    g[k_] := Exp[Sum[x^j/j!, {j, 1, k}]];
    cc = CoefficientList[g[size]-g[size-1]+O[x]^(nmax+1), x]*Range[0, nmax]!;
    a[n_] := cc[[n+1]];
    a /@ Range[nmin, nmax] (* Jean-François Alcover, Mar 07 2021 *)

Formula

E.g.f.: exp(Sum_{j=1..5} x^j/j!) - exp(Sum_{j=1..4} x^j/j!).