cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A229234 O.g.f.: Sum_{n>=0} n! * x^n / Product_{k=1..n} (1 - n*k*x).

Original entry on oeis.org

1, 1, 3, 19, 189, 2671, 50253, 1203679, 35548509, 1263153631, 52973381853, 2581493517439, 144317666200029, 9156299509121311, 653254398215833053, 51995430120141924799, 4585316010326597014749, 445304380297565009962591, 47368550666889620425580253, 5492643630110295899167573759
Offset: 0

Views

Author

Paul D. Hanna, Sep 17 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 3*x^2 + 19*x^3 + 189*x^4 + 2671*x^5 + 50253*x^6 +...
where
A(x) = 1 + x/(1-x) + 2!*x^2/((1-2*1*x)*(1-2*2*x)) + 3!*x^3/((1-3*1*x)*(1-3*2*x)*(1-3*3*x)) + 4!*x^4/((1-4*1*x)*(1-4*2*x)*(1-4*3*x)*(1-4*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 3*x^2/2! + 19*x^3/3! + 189*x^4/4! + 2671*x^5/5! +...
where
E(x) = 1 + (exp(x)-1) + (exp(2*x)-1)^2/2^2 + (exp(3*x)-1)^3/3^3 + (exp(4*x)-1)^4/4^4 + (exp(5*x)-1)^5/5^5 +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[k^(n-k) * k! * StirlingS2[n, k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m!*x^m/prod(k=1,m,1-m*k*x +x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,(exp(m*x+x*O(x^n))-1)^m/m^m),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0, n, k^(n-k) * k! * stirling(n, k, 2))}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} k^(n-k) * k! * Stirling2(n, k).
E.g.f.: Sum_{n>=0} (exp(n*x) - 1)^n / n^n.

A229260 O.g.f.: Sum_{n>=0} n! * n^(2*n) * x^n / Product_{k=1..n} (1 - n^2*k*x).

Original entry on oeis.org

1, 1, 33, 4759, 1812645, 1432421311, 2033196095973, 4707913008727279, 16598602853910799125, 84603008117292025844671, 598699398082553327852353413, 5694542805400507375406964870799, 70891082687197321771955383523878005, 1129717853570486718325946169950885995231
Offset: 0

Views

Author

Paul D. Hanna, Sep 17 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 33*x^2 + 4759*x^3 + 1812645*x^4 + 1432421311*x^5 +...
where
A(x) = 1 + x/(1-x) + 2!*2^4*x^2/((1-2^2*1*x)*(1-2^2*2*x)) + 3!*3^6*x^3/((1-3^2*1*x)*(1-3^2*2*x)*(1-3^2*3*x)) + 4!*4^8*x^4/((1-4^2*1*x)*(1-4^2*2*x)*(1-4^2*3*x)*(1-4^2*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 33*x^2/2! + 4759*x^3/3! + 1812645*x^4/4! +...
where
E(x) = 1 + (exp(x)-1) + (exp(4*x)-1)^2 + (exp(9*x)-1)^3 + (exp(16*x)-1)^4 + (exp(25*x)-1)^5 + (exp(36*x)-1)^6 + (exp(49*x)-1)^7 +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[k^(2*n) * k! * StirlingS2[n,k], {k,0,n}], {n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m!*m^(2*m)*x^m/prod(k=1,m,1-m^2*k*x +x*O(x^n))),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,(exp(m^2*x+x*O(x^n))-1)^m),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {Stirling2(n, k)=n!*polcoeff(((exp(x+x*O(x^n))-1)^k)/k!, n)}
    {a(n)=sum(k=0, n, k^(2*n) * k! * Stirling2(n, k))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} k^(2*n) * k! * Stirling2(n, k).
E.g.f.: Sum_{n>=0} (exp(n^2*x) - 1)^n.
a(n) ~ c * d^n * (n!)^3 / n, where d = r^3*(1+exp(2/r)) = 7.8512435106631367719817991716164612615296980032514..., r = 0.94520217245242431308104743874492469552738... is the root of the equation (1+exp(-2/r))*LambertW(-exp(-1/r)/r) = -1/r, and c = 0.142680262107781025906560380273234930916319644... . - Vaclav Kotesovec, May 08 2014

A229261 O.g.f.: Sum_{n>=0} n^(2*n) * x^n / Product_{k=1..n} (1 - n^2*k*x).

Original entry on oeis.org

1, 1, 17, 922, 106695, 21742971, 6977367418, 3273755821827, 2129976884025085, 1846718792259030760, 2068516760060790309349, 2919795339100534415091143, 5088912154987483773753872912, 10766599670032172748225017763021, 27254500086981764567988714050736205
Offset: 0

Views

Author

Paul D. Hanna, Sep 17 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 17*x^2 + 922*x^3 + 106695*x^4 + 21742971*x^5 +...
where
A(x) = 1 + x/(1-x) + 2^4*x^2/((1-2^2*1*x)*(1-2^2*2*x)) + 3^6*x^3/((1-3^2*1*x)*(1-3^2*2*x)*(1-3^2*3*x)) + 4^8*x^4/((1-4^2*1*x)*(1-4^2*2*x)*(1-4^2*3*x)*(1-4^2*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 17*x^2/2! + 922*x^3/3! + 106695*x^4/4! +...
where
E(x) = 1 + (exp(x)-1) + (exp(4*x)-1)^2/2! + (exp(9*x)-1)^3/3! + (exp(16*x)-1)^4/4! + (exp(25*x)-1)^5/5! + (exp(36*x)-1)^6/6! +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[k^(2*n) * StirlingS2[n, k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m^(2*m)*x^m/prod(k=1,m,1-m^2*k*x +x*O(x^n))),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,(exp(m^2*x+x*O(x^n))-1)^m/m!),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0, n, k^(2*n) * stirling(n, k, 2))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} k^(2*n) * Stirling2(n, k).
E.g.f.: Sum_{n>=0} (exp(n^2*x) - 1)^n / n!.

A229233 O.g.f.: Sum_{n>=0} x^n / Product_{k=1..n} (1 - n*k*x).

Original entry on oeis.org

1, 1, 2, 8, 48, 387, 4043, 52425, 819346, 15133184, 324769270, 7986143453, 222514878501, 6958782341565, 242274294115558, 9324382604206368, 394282071192289024, 18218582054356563951, 915480348188869318723, 49812603754178905560085, 2923492374797360684715882
Offset: 0

Views

Author

Paul D. Hanna, Sep 17 2013

Keywords

Comments

Compare to an o.g.f. of Bell numbers (A000110): Sum_{n>=0} x^n/Product_{k=1..n} (1-k*x).

Examples

			O.g.f.: A(x) = 1 + x + 2*x^2 + 8*x^3 + 48*x^4 + 387*x^5 + 4043*x^6 +...
where
A(x) = 1 + x/(1-x) + x^2/((1-2*1*x)*(1-2*2*x)) + x^3/((1-3*1*x)*(1-3*2*x)*(1-3*3*x)) + x^4/((1-4*1*x)*(1-4*2*x)*(1-4*3*x)*(1-4*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 2*x^2/2! + 8*x^3/3! + 48*x^4/4! + 387*x^5/5! +...
where
E(x) = 1 + (exp(x)-1) + (exp(2*x)-1)^2/(2!*2^2) + (exp(3*x)-1)^3/(3!*3^3) + (exp(4*x)-1)^4/(4!*4^4) + (exp(5*x)-1)^5/(5!*5^5) +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[k^(n-k) * StirlingS2[n, k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^m/prod(k=1,m,1-m*k*x +x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,(exp(m*x+x*O(x^n))-1)^m/(m!*m^m)),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0, n, k^(n-k) * stirling(n, k, 2))}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} k^(n-k) * Stirling2(n, k).
E.g.f.: Sum_{n>=0} (exp(n*x) - 1)^n / (n! * n^n).

A229259 O.g.f.: Sum_{n>=0} n! * n^n * x^n / Product_{k=1..n} (1 - n^2*k*x).

Original entry on oeis.org

1, 1, 9, 259, 15789, 1693771, 287145789, 71487432619, 24798142070109, 11518873418467051, 6945333793188487869, 5301472723402989073579, 5018547949600497090304029, 5790959348524892656227425131, 8026963462960378548022418765949, 13197920271743736945902641688868139
Offset: 0

Views

Author

Paul D. Hanna, Sep 17 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 9*x^2 + 259*x^3 + 15789*x^4 + 1693771*x^5 +...
where
A(x) = 1 + x/(1-x) + 2!*2^2*x^2/((1-2^2*1*x)*(1-2^2*2*x)) + 3!*3^3*x^3/((1-3^2*1*x)*(1-3^2*2*x)*(1-3^2*3*x)) + 4!*4^4*x^4/((1-4^2*1*x)*(1-4^2*2*x)*(1-4^2*3*x)*(1-4^2*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 9*x^2/2! + 259*x^3/3! + 15789*x^4/4! + 1693771*x^5/5! +...
where
E(x) = 1 + (exp(x)-1) + (exp(4*x)-1)^2/2^2 + (exp(9*x)-1)^3/3^3 + (exp(16*x)-1)^4/4^4 + (exp(25*x)-1)^5/5^5 +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[k^(2*n-k) * k! * StirlingS2[n, k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,m!*m^m*x^m/prod(k=1,m,1-m^2*k*x +x*O(x^n))),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,(exp(m^2*x+x*O(x^n))-1)^m/m^m),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0, n, k^(2*n-k) * k! * stirling(n, k, 2))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} k^(2*n-k) * k! * Stirling2(n, k).
E.g.f.: Sum_{n>=0} (exp(n^2*x) - 1)^n / n^n.

A229257 O.g.f.: Sum_{n>=0} x^n / Product_{k=1..n} (1 - n^2*k*x).

Original entry on oeis.org

1, 1, 2, 14, 168, 3147, 90563, 3561231, 185790622, 12599020184, 1071164190670, 111813313594259, 14140296360430353, 2132273568722682621, 378197030144360862958, 78127192632748956075174, 18627308660113953164384812, 5081218748742336002185874439, 1574128413278644602881499193579
Offset: 0

Views

Author

Paul D. Hanna, Sep 17 2013

Keywords

Examples

			O.g.f.: A(x) = 1 + x + 2*x^2 + 14*x^3 + 168*x^4 + 3147*x^5 + 90563*x^6 +...
where
A(x) = 1 + x/(1-x) + x^2/((1-2^2*1*x)*(1-2^2*2*x)) + x^3/((1-3^2*1*x)*(1-3^2*2*x)*(1-3^2*3*x)) + x^4/((1-4^2*1*x)*(1-4^2*2*x)*(1-4^2*3*x)*(1-4^2*4*x)) +...
Exponential Generating Function.
E.g.f.: E(x) = 1 + x + 2*x^2/2! + 14*x^3/3! + 168*x^4/4! + 3147*x^5/5! +...
where
E(x) = 1 + (exp(x)-1) + (exp(4*x)-1)^2/(2!*4^2) + (exp(9*x)-1)^3/(3!*9^3) + (exp(16*x)-1)^4/(4!*16^4) + (exp(25*x)-1)^5/(5!*25^5) +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[Sum[(k^2)^(n-k) * StirlingS2[n, k],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^m/prod(k=1,m,1-m^2*k*x +x*O(x^n))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=n!*polcoeff(sum(m=0,n,(exp(m^2*x+x*O(x^n))-1)^m/(m!*m^(2*m))),n)}
    for(n=0,30,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0, n, (k^2)^(n-k) * stirling(n, k, 2))}
    for(n=0,30,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} (k^2)^(n-k) * Stirling2(n, k).
E.g.f.: Sum_{n>=0} (exp(n^2*x) - 1)^n / (n! * n^(2*n)).

A227207 E.g.f.: Sum_{n>=0} n^n * x^n / (n! * Product_{k=0..n} (1 - n*k*x)).

Original entry on oeis.org

1, 1, 6, 105, 3568, 204745, 18028266, 2278860535, 394667414016, 90302033890953, 26525942216131330, 9775058594870836861, 4433256936788979640848, 2434899483389881601250937, 1597444746833206096334387802, 1237091666097626095124512681755, 1119205949224015886848972396596736
Offset: 0

Views

Author

Paul D. Hanna, Sep 18 2013

Keywords

Examples

			E.g.f.: A(x) = 1 + x + 6*x^2/2! + 105*x^3/3! + 3568*x^4/4! + 204745*x^5/5! +...
where
A(x) = 1 + x/(1-x) + 2^2*x^2/(2!*(1-2*1*x)*(1-2*2*x)) + 3^3*x^3/(3!*(1-3*1*x)*(1-3*2*x)*(1-3*3*x)) + 4^4*x^4/(4!*(1-4*1*x)*(1-4*2*x)*(1-4*3*x)*(1-4*4*x)) +...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[n! * Sum[k^n * StirlingS2[n,k] / k!,{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 08 2014 *)
  • PARI
    {a(n)=n!*polcoeff(sum(m=0, 20, m^m*x^m/m!/prod(k=1, m, 1-m*k*x +x*O(x^n))), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=n!^2*polcoeff(sum(m=0, n, (exp(m*x+x*O(x^n))-1)^m/m!^2), n)}
    for(n=0, 20, print1(a(n), ", "))
    
  • PARI
    {a(n)=n!*sum(k=0, n, k^n*stirling(n, k, 2)/k!)}
    for(n=0, 20, print1(a(n), ", "))

Formula

Sum_{n>=0} a(n)*x^n / n!^2 = Sum_{n>=0} (exp(n*x) - 1)^n / n!^2.
a(n) = n! * Sum_{k=0..n} k^n * Stirling2(n,k) / k!.
Showing 1-7 of 7 results.