A229268 Primes of the form sigma(k) - tau(k), where sigma(k) = A000203(k) and tau(k) = A000005(k).
2, 11, 353, 1013, 2333, 16369, 58579, 65519, 123733, 1982273, 7089683, 5778653, 12795053, 10500593, 22586027, 19980143, 24126653, 67108837, 72494713, 90781993, 106199593, 203275951, 164118923, 183105421, 320210549, 259997173, 794091653, 1279963973
Offset: 1
Keywords
Examples
Second term of A065061 is 8 and sigma(8) - tau(8) = 15 - 4 = 11 is prime.
Links
- Amiram Eldar, Table of n, a(n) for n = 1..5000
Crossrefs
Programs
-
Maple
with(numtheory); P:=proc(q) local a,n; a:= sigma(n)-tau(n); for n from 1 to q do if isprime(a) then print(a); fi; od; end: P(10^6);
-
Mathematica
Join[{2}, Select[(DivisorSigma[1, #] - DivisorSigma[0, #]) & /@ (2*Range[20000]^2), PrimeQ]] (* Amiram Eldar, Dec 06 2022 *)
Formula
Extensions
More terms from Michel Marcus, Sep 21 2013