A229270 Numbers k for which k' - k is prime, k' being the arithmetic derivative of k.
18, 210, 315, 330, 390, 462, 510, 546, 690, 726, 798, 870, 930, 966, 1110, 1218, 1230, 1290, 1302, 1554, 1590, 1770, 2010, 2130, 2190, 2310, 2370, 2490, 2730, 2910, 3030, 3210, 3270, 3570, 3810, 4110, 4290, 4470, 4530, 4830, 4890, 5010, 5430, 5790, 5910, 5970
Offset: 1
Keywords
Examples
315 is in the list because 315’ = 318 and 318 - 315 = 3 that is prime.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..500
Programs
-
Maple
with(numtheory); P:=proc(q) local a,n,p; for n from 1 to q do a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); if isprime(a-n) then print(n); fi; od; end: P(10^5);
-
Python
from sympy import isprime, factorint A229270 = [n for n in range(1,10**5) if isprime(sum([int(n*e/p) for p,e in factorint(n).items()])-n)] # Chai Wah Wu, Aug 21 2014