cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A229269 Numbers k for which k - k' is prime, k' being the arithmetic derivative of k.

Original entry on oeis.org

3, 9, 10, 14, 15, 21, 26, 33, 35, 38, 39, 50, 51, 62, 65, 66, 69, 70, 77, 78, 86, 91, 93, 95, 102, 110, 111, 114, 122, 123, 129, 130, 133, 138, 146, 154, 159, 161, 170, 174, 190, 201, 203, 206, 209, 213, 215, 217, 218, 221, 222, 230, 238, 249, 258, 278, 282, 287
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Examples

			15 is in the list because 15’ = 8 and 15 - 8 = 7 that is prime.
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,n,p; for n from 1 to q do
    a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); if isprime(n-a) then print(n); fi; od; end: P(10^5);
  • Python
    from sympy import isprime, factorint
    A229269 = [n for n in range(1,10**4) if isprime(n-sum([int(n*e/p) for p,e in factorint(n).items()]))] # Chai Wah Wu, Aug 21 2014

A229272 Numbers n for which n' + n and n' - n are both prime, n' being the arithmetic derivative of n.

Original entry on oeis.org

210, 330, 390, 690, 798, 966, 1110, 1230, 2190, 2310, 2730, 3270, 4110, 4530, 4890, 5430, 6090, 6270, 6810, 6990, 7230, 7890, 8310, 8490, 9030, 9210, 9282, 10470, 10590, 10770, 12090, 12210, 12270, 12570, 12810, 12930, 13110, 13830, 14070, 17070, 17094, 17310
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Comments

Intersection of A165561 and A229270.

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,n,p; for n from 1 to q do
    a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    if isprime(a+n) and isprime(a-n) then print(n); fi;
    od; end: P(10^5);
  • Python
    from sympy import isprime, factorint
    A229272 = []
    for n in range(1, 10**5):
        np = sum([int(n*e/p) for p, e in factorint(n).items()]) if n > 1 else 0
        if isprime(np+n) and isprime(np-n):
            A229272.append(n)
    # Chai Wah Wu, Aug 21 2014

A229271 Numbers k for which k + k' and k - k' are both prime, k' being the arithmetic derivative of k.

Original entry on oeis.org

10, 14, 15, 21, 26, 33, 35, 38, 51, 65, 66, 78, 86, 93, 102, 110, 111, 123, 161, 201, 203, 206, 209, 215, 221, 230, 258, 278, 282, 321, 371, 374, 395, 398, 402, 413, 438, 470, 471, 485, 530, 533, 543, 545, 551, 590, 626, 671, 678, 698, 723, 755, 779, 803, 815
Offset: 1

Views

Author

Paolo P. Lava, Sep 18 2013

Keywords

Comments

Intersection of A165561 and A229269.

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local a,n,p; for n from 1 to q do
    a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    if isprime(n+a) and isprime(n-a) then print(n); fi;
    od; end: P(10^5);
Showing 1-3 of 3 results.