A229272 Numbers n for which n' + n and n' - n are both prime, n' being the arithmetic derivative of n.
210, 330, 390, 690, 798, 966, 1110, 1230, 2190, 2310, 2730, 3270, 4110, 4530, 4890, 5430, 6090, 6270, 6810, 6990, 7230, 7890, 8310, 8490, 9030, 9210, 9282, 10470, 10590, 10770, 12090, 12210, 12270, 12570, 12810, 12930, 13110, 13830, 14070, 17070, 17094, 17310
Offset: 1
Keywords
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..300
Programs
-
Maple
with(numtheory); P:=proc(q) local a,n,p; for n from 1 to q do a:=n*add(op(2,p)/op(1,p),p=ifactors(n)[2]); if isprime(a+n) and isprime(a-n) then print(n); fi; od; end: P(10^5);
-
Python
from sympy import isprime, factorint A229272 = [] for n in range(1, 10**5): np = sum([int(n*e/p) for p, e in factorint(n).items()]) if n > 1 else 0 if isprime(np+n) and isprime(np-n): A229272.append(n) # Chai Wah Wu, Aug 21 2014
Comments