cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229297 Number of solutions to x^2 == n (mod 2*n) for 0 <= x < 2*n.

Original entry on oeis.org

1, 0, 1, 2, 1, 0, 1, 0, 3, 0, 1, 2, 1, 0, 1, 4, 1, 0, 1, 2, 1, 0, 1, 0, 5, 0, 3, 2, 1, 0, 1, 0, 1, 0, 1, 6, 1, 0, 1, 0, 1, 0, 1, 2, 3, 0, 1, 4, 7, 0, 1, 2, 1, 0, 1, 0, 1, 0, 1, 2, 1, 0, 3, 8, 1, 0, 1, 2, 1, 0, 1, 0, 1, 0, 5, 2, 1, 0, 1, 4, 9, 0, 1, 2, 1, 0
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    A[n_] := Sum[If[Mod[a^2, 2*n] == n, 1, 0], {a, 0, 2*n - 1}]; Array[A, 100]
    f[p_, e_] := If[OddQ[e], p^((e - 1)/2), p^(e/2)]; f[2, e_] := If[OddQ[e], 0, 2^(e/2)]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Jan 01 2023 *)
  • PARI
    a(n)={sum(i=0, 2*n-1, i^2%(2*n)==n)} \\ Andrew Howroyd, Aug 06 2018
    
  • PARI
    a(n)={if(valuation(n,2)%2==1, 0, core(n, 1)[2])} \\ Andrew Howroyd, Aug 07 2018

Formula

From Andrew Howroyd, Aug 07 2018: (Start)
Multiplicative with a(2^e) = 0 for odd e and 2^floor(e/2) for even e, and a(p^e) = p^floor(e/2) for p>=3. [corrected by Georg Fischer, Aug 01 2022].
a(n) = A000188(n) for odd n, a(2^k) = 1 + (-1)^k for k > 0. (End)
From Amiram Eldar, Jan 01 2023: (Start)
Dirichlet g.f.: zeta(2*s-1)*zeta(s)/(zeta(2*s)*(1+1/2^s)).
Sum_{k=1..n} a(k) ~ (n*log(n) + (3*gamma + log(2)/3 - 2*zeta'(2)/zeta(2) - 1)*n)*2/Pi^2, where gamma is Euler's constant (A001620). (End)