A229303 Numbers m such that A031971(2*m) == m (mod 2*m).
1, 2, 4, 5, 7, 8, 11, 13, 14, 16, 17, 19, 22, 23, 25, 26, 28, 29, 31, 32, 34, 35, 37, 38, 41, 43, 44, 46, 47, 49, 52, 53, 56, 58, 59, 61, 62, 64, 65, 67, 68, 71, 73, 74, 76, 77, 79, 82, 83, 85, 86, 88, 89, 91, 92, 94, 95, 97, 98, 101, 103, 104, 106, 107, 109, 112, 113, 115, 116, 118, 119, 121, 122, 124, 125
Offset: 1
Keywords
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
- Jose María Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n
Crossrefs
Programs
-
Maple
a:= proc(n) option remember; local m; for m from 1+`if`(n=1, 0, a(n-1)) do if (t-> m=(add(k&^t mod t, k=1..t) mod t))(2*m) then return m fi od end: seq(a(n), n=1..200); # Alois P. Heinz, May 01 2016
-
Mathematica
g[n_] := Mod[Sum[PowerMod[i, n, n], {i, n}], n]; Select[Range[100], g[2*#] == # &]
-
PARI
b(n)=sum(k=1, n, Mod(k,n)^n); for(n=1,200,if(b(2*n)==n,print1(n,", "))); \\ Joerg Arndt, May 01 2016
Comments