A229312 Numbers n such that A031971(47058*n) == n (mod 47058*n).
5, 15, 25, 45, 55, 65, 75, 85, 95, 115, 125, 135, 145, 155, 165, 185, 195, 205, 215, 225, 255, 265, 275, 295, 305, 325, 345, 355, 365, 375, 395, 405, 415, 425, 435, 445, 465, 475, 485, 495, 505, 515, 535, 545, 555, 565, 575, 585, 605, 615, 625, 635, 645, 655
Offset: 1
Keywords
Links
- Jose María Grau, A. M. Oller-Marcen, and J. Sondow, On the congruence 1^n + 2^n +... + n^n = d (mod n), where d divides n
Crossrefs
Programs
-
Mathematica
fa = FactorInteger; Car[k_, n_] := Mod[n - Sum[If[IntegerQ[k/(fa[n][[i, 1]] - 1)], n/fa[n][[i, 1]], 0], {i, 1, Length[fa[n]]}], n]; supercar[k_, n_] := If[k == 1 || Mod[k, 2] == 0 || Mod[n, 4] > 0, Car[k,n], Mod[Car[k, n] - n/2, n]]; Select[Range[1000], supercar[47058*#, 47058*#] == # &]
Comments