cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229331 Total sum of 9th powers of parts in all partitions of n.

Original entry on oeis.org

0, 1, 514, 20199, 283370, 2256695, 12637956, 55247745, 202345886, 644749920, 1846772550, 4836548836, 11795957334, 27022021703, 58819382790, 122237638440, 244429962966, 471615005229, 882955864560, 1606698758560, 2853601781340, 4952029001892, 8423307325854
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2013

Keywords

Comments

The bivariate g.f. for the partition statistic "sum of 9th powers of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^9}*x^k). The g.f. g at the Formula section has been obtained by evaluating dG/dt at t=1. - Emeric Deutsch, Dec 06 2015

Crossrefs

Column k=9 of A213191.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
          ((g, h)-> g+h+[0, h[1]*i^9])(b(n, i-1), b(n-i, i)))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..40);
    # second Maple program:
    g := (sum(k^9*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
  • Mathematica
    (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n - k, k] + PartitionsP[n - k]; T[, ] = 0; a[n_] := Sum[T[n, k]*k^9, {k, 1, n}]; Array[a, 40, 0] (* Jean-François Alcover, Dec 15 2016 *)

Formula

a(n) = Sum_{k=1..n} A066633(n,k) * k^9.
G.f.: g(x) = (Sum_{k>=1} k^9*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 27648*sqrt(3)/11 * exp(Pi*sqrt(2*n/3)) * n^4. - Vaclav Kotesovec, May 28 2018