A229345 Number A(n,k) of lattice paths from {n}^k to {0}^k using steps that decrement one component or all components by the same positive integer; square array A(n,k), n>=0, k>=0, read by antidiagonals.
1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 7, 22, 4, 1, 1, 25, 248, 188, 8, 1, 1, 121, 6506, 11380, 1712, 16, 1, 1, 721, 292442, 2359348, 577124, 16098, 32, 1, 1, 5041, 19450082, 1088626684, 991365512, 30970588, 154352, 64, 1
Offset: 0
Examples
A(2,2) = 22: [(2,2),(1,1),(0,0)], [(2,2),(1,1),(0,1),(0,0)], [(2,2),(1,1),(1,0),(0,0)], [(2,2),(0,0)], [(2,2),(1,2),(0,1),(0,0)], [(2,2),(1,2),(0,2),(0,1),(0,0)], [(2,2),(1,2),(0,2),(0,0)], [(2,2),(1,2),(1,1),(0,0)], [(2,2),(1,2),(1,1),(0,1),(0,0)], [(2,2),(1,2),(1,1),(1,0),(0,0)], [(2,2),(1,2),(1,0),(0,0)], [(2,2),(0,2),(0,1),(0,0)], [(2,2),(0,2),(0,0)], [(2,2),(2,1),(1,0),(0,0)], [(2,2),(2,1),(1,1),(0,0)], [(2,2),(2,1),(1,1),(0,1),(0,0)], [(2,2),(2,1),(1,1),(1,0),(0,0)], [(2,2),(2,1),(0,1),(0,0)], [(2,2),(2,1),(2,0),(1,0),(0,0)], [(2,2),(2,1),(2,0),(0,0)], [(2,2),(2,0),(1,0),(0,0)], [(2,2),(2,0),(0,0)]. Square array A(n,k) begins: 1, 1, 1, 1, 1, 1, ... 1, 1, 3, 7, 25, 121, ... 1, 2, 22, 248, 6506, 292442, ... 1, 4, 188, 11380, 2359348, 1088626684, ... 1, 8, 1712, 577124, 991365512, 4943064622568, ... 1, 16, 16098, 30970588, 453530591824, 25162900228200976, ...
Links
- Alois P. Heinz, Antidiagonals n = 0..20, flattened
Crossrefs
Programs
-
Maple
b:= proc(l) option remember; local m; m:= nops(l); `if`(m=0 or l[m]=0, 1, `if`(m>1, add(b(l-[j$m]), j=1..l[1]), 0)+ add(add(b(sort(subsop(i=l[i]-j, l))), j=1..l[i]), i=1..m)) end: A:= (n, k)-> b([n$k]): seq(seq(A(n, d-n), n=0..d), d=0..10); # Alois P. Heinz, Sep 24 2013
-
Mathematica
b[l_] := b[l] = With[{m = Length[l]}, If[m == 0 || l[[m]] == 0, 1, If[m > 1, Sum[b[l - Array[j&, m]], {j, 1, l[[1]]}], 0] + Sum[Sum[b[Sort[ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, m}]]]; a[n_, k_] := b[Array[n&, k]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 16 2013, translated from Maple *)