A229362 a(n) = n for n = 1, 2, 3; for n > 3: a(n) = number of partitions of n into preceding terms.
1, 2, 3, 4, 6, 10, 12, 17, 21, 29, 34, 47, 55, 71, 84, 107, 124, 156, 180, 221, 256, 310, 355, 428, 488, 578, 660, 775, 879, 1027, 1160, 1342, 1516, 1743, 1958, 2243, 2513, 2858, 3198, 3621, 4037, 4556, 5065, 5689, 6316, 7069, 7824, 8733, 9644, 10726, 11827
Offset: 1
Keywords
Examples
a(4) = #{3+1, 2+2, 2+1+1, 1+1+1+1} = 4 < A000041(4) = 5; a(5) = #{4+1, 3+2, 3+1+1, 2+2+1, 2+1+1+1, 5x1} = 6 < A000041(5) = 7; a(6) = #{6, 4+2, 4+1+1, 3+3, 3+2+1, 3+1+1+1, 2+2+2, 2+2+1+1, 2+4x1, 6x1} = 10 < A000041(6) = 11; a(7) = #{6+1, 4+3, 4+2+1, 4+1+1+1, 3+3+1, 3+2+2, 3+2+1+1, 3+4x1, 2+2+2+1, 2+2+1+1+1, 2+5x1, 7x1} = 12 < A000041(7) = 15.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a229362 n = a229362_list !! (n-1) a229362_list = 1 : 2 : 3 : f 4 [1,2,3] where f x ys = y : f (x + 1) (ys ++ [y]) where y = p ys x p _ 0 = 1 p [] _ = 0 p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-
Mathematica
a[n_] := a[n] = If[n<4, n, IntegerPartitions[n, All, Array[a, n-1]] // Length]; Table[Print[n, " ", a[n]]; a[n], {n, 1, 100}] (* Jean-François Alcover, Mar 12 2019 *)