cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229417 T(n,k) = number of n X n 0..k zero-diagonal arrays with corresponding row and column sums equal.

Original entry on oeis.org

1, 1, 2, 1, 3, 10, 1, 4, 45, 152, 1, 5, 136, 4743, 7736, 1, 6, 325, 59008, 3801411, 1375952, 1, 7, 666, 426425, 345706336, 23938685973, 877901648, 1, 8, 1225, 2164680, 11782824375, 28256240134144, 1215663478473627, 2046320373120, 1, 9, 2080
Offset: 1

Views

Author

R. H. Hardin, Sep 22 2013

Keywords

Comments

Table starts
.........1................1....................1................1............1
.........2................3....................4................5............6
........10...............45..................136..............325..........666
.......152.............4743................59008...........426425......2164680
......7736..........3801411............345706336......11782824375.213067487016
...1375952......23938685973.......28256240134144.7093199984236625
.877901648.1215663478473627.33097994593655140864

Examples

			Some solutions for n=4 k=4
..0..0..2..0....0..1..0..4....0..0..1..3....0..1..1..4....0..1..1..0
..1..0..2..1....2..0..4..0....1..0..2..3....4..0..2..3....0..0..1..2
..1..2..0..4....2..4..0..2....2..3..0..1....1..4..0..1....0..0..0..4
..0..2..3..0....1..1..4..0....1..3..3..0....1..4..3..0....2..2..2..0
		

Crossrefs

Columns 1..3 are A007080, A229415, A229416.
Rows 3..6 are A037270(n+1), A229418, A229419, A229420.
Cf. A229870.

Formula

Empirical for row n:
n=1: a(n) = 1
n=2: a(n) = n + 1
n=3: a(n) = (1/2)*n^4 + 2*n^3 + (7/2)*n^2 + 3*n + 1
n=4: [polynomial of degree 9]
Row n is an Ehrhart polynomial of degree (n-1)^2 for the polytope of x(i,j), i,j = 1..n for j <> i, with 0 <= x(i,j) <= 1 and Sum_i x(i,j) = Sum_i x(j,i). - Robert Israel, Mar 30 2023
T(n,k) = A229870(n,k) / (k + 1)^n. - Andrew Howroyd, Mar 30 2023