A229417 T(n,k) = number of n X n 0..k zero-diagonal arrays with corresponding row and column sums equal.
1, 1, 2, 1, 3, 10, 1, 4, 45, 152, 1, 5, 136, 4743, 7736, 1, 6, 325, 59008, 3801411, 1375952, 1, 7, 666, 426425, 345706336, 23938685973, 877901648, 1, 8, 1225, 2164680, 11782824375, 28256240134144, 1215663478473627, 2046320373120, 1, 9, 2080
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..0..2..0....0..1..0..4....0..0..1..3....0..1..1..4....0..1..1..0 ..1..0..2..1....2..0..4..0....1..0..2..3....4..0..2..3....0..0..1..2 ..1..2..0..4....2..4..0..2....2..3..0..1....1..4..0..1....0..0..0..4 ..0..2..3..0....1..1..4..0....1..3..3..0....1..4..3..0....2..2..2..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..43
Crossrefs
Formula
Empirical for row n:
n=1: a(n) = 1
n=2: a(n) = n + 1
n=3: a(n) = (1/2)*n^4 + 2*n^3 + (7/2)*n^2 + 3*n + 1
n=4: [polynomial of degree 9]
Row n is an Ehrhart polynomial of degree (n-1)^2 for the polytope of x(i,j), i,j = 1..n for j <> i, with 0 <= x(i,j) <= 1 and Sum_i x(i,j) = Sum_i x(j,i). - Robert Israel, Mar 30 2023
T(n,k) = A229870(n,k) / (k + 1)^n. - Andrew Howroyd, Mar 30 2023
Comments