A229430 Number of ways to label the cells of a 2 X n grid such that no (orthogonally) adjacent cells have adjacent labels.
1, 0, 0, 24, 1660, 160524, 21914632, 4065598248, 987830372684, 304870528356476, 116578000930637000, 54116343193686469960, 29984241542575292762940, 19548555813018460134901516, 14815308073366437897483622056, 12915964646307201385492841052040
Offset: 0
Keywords
Examples
The A(3) = 24 valid labelings of a 2 X 3 grid are 153 163 135 513 415 416 426 425 462 246 263 253 together with their 18 reflections and rotations.
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..100
- F. C. Holroyd and W. J. G. Wingate, Cycles in the complement of a tree or other graph, Discrete Math., 55 (1985), 267-282.
- Andrew Howroyd, Worked Solution and Formula
- Eric Weisstein's World of Mathematics, Ladder Graph
- Eric Weisstein's World of Mathematics, Hamiltonian Path
Programs
-
PARI
seq(n)={my(gf=(1 - x)*(1 + (3*y - 2)*x + (y + 1)*x^2)/(1 + (-y^2 + 5*y - 3)*x + (y^3 - 3*y^2 + 3)*x^2 + (-2*y^3 + 5*y^2 - 3*y - 1)*x^3 + (y^3 - y^2 + 2*y)*x^4)); [subst(serlaplace(p*y^0),y,1) | p <- Vec(gf + O(x*x^n))]} \\ Andrew Howroyd, Feb 16 2020
Extensions
Terms a(9) and beyond from Andrew Howroyd, Feb 14 2020
Comments