cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229482 Number of lattice paths from {n}^3 to {0}^3 using steps that decrement one component or all components by the same positive integer.

Original entry on oeis.org

1, 7, 248, 11380, 577124, 30970588, 1724240804, 98508192580, 5736813639188, 339068764626556, 20277072462706100, 1224258843324348388, 74504869395134442884, 4564559749008113090620, 281250580532881468554692, 17415330397418786646707236
Offset: 0

Views

Author

Alois P. Heinz, Sep 24 2013

Keywords

Crossrefs

Column k=3 of A229345.

Programs

  • Maple
    b:= proc(l) local m; m:= nops(l); if m=0 or l[m]=0 then 1
          elif m>1 then b(l):= add(add(b(sort(subsop(i=l[i]-j, l))),
          j=1..l[i]), i=1..m)+add(b(map(x->x-j, l)), j=1..l[1]) else 0 fi
        end:
    a:= n-> b([n$3]):
    seq(a(n), n=0..20);
  • Mathematica
    b[l_] := b[l] = With[{m = Length[l]}, If[m == 0 || l[[m]] == 0, 1, If[m > 1, Sum[b[l - Array[j&, m]], {j, 1, l[[1]]}], 0] + Sum[Sum[b[Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, m}]]];
    a[n_] := b[{n, n, n}];
    a /@ Range[0, 20] (* Jean-François Alcover, Dec 22 2020, after Alois P. Heinz *)

Formula

a(n) ~ c*d^n/n, where d = (3*(375+sqrt(17))^(2/3)+156+23*(375+sqrt(17))^(1/3))/(375+sqrt(17))^(1/3) = 66.266905910039023... is the root of the equation -125 + 183*d - 69*d^2 + d^3 = 0 and c = sqrt(-269/225 + 2*sqrt(14561) * cosh(arccosh(60154403/(116488*sqrt(14561)))/3)/225)/Pi = 0.1272434612906147722352211214089... - Vaclav Kotesovec, Sep 25 2013, updated Mar 17 2024