A229534 T(n,k) = number of defective 3-colorings of an n X k 0..2 array connected horizontally, diagonally and antidiagonally with exactly one mistake, and colors introduced in row-major 0..2 order.
0, 1, 0, 2, 4, 0, 6, 8, 20, 0, 16, 36, 58, 84, 0, 40, 112, 361, 356, 324, 0, 96, 368, 1588, 3064, 2038, 1188, 0, 224, 1152, 7460, 19276, 24344, 11184, 4212, 0, 512, 3568, 33136, 130854, 221096, 185808, 59626, 14580, 0, 1152, 10880, 146300, 833108, 2171944
Offset: 1
Examples
Some solutions for n=3, k=4: 0 1 0 1 0 1 0 2 0 1 0 0 0 1 0 0 0 1 2 0 0 2 0 2 1 2 0 2 0 1 2 1 2 1 2 1 0 1 2 0 2 1 0 1 1 2 0 2 2 1 2 1 0 1 2 1 2 1 0 1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..337
Formula
Empirical for column k:
k=1: a(n) = a(n-1).
k=2: a(n) = 6*a(n-1) - 9*a(n-2) for n > 3.
k=3: a(n) = 10*a(n-1) - 29*a(n-2) + 20*a(n-3) - 4*a(n-4) for n > 5.
k=4: a(n) = 14*a(n-1) - 57*a(n-2) + 56*a(n-3) - 16*a(n-4) for n > 5.
k=5: [order 12] for n > 13.
k=6: [order 18] for n > 19.
k=7: [order 38] for n > 39.
Empirical for row n:
n=1: a(n) = 4*a(n-1) - 4*a(n-2) for n > 4.
n=2: a(n) = 4*a(n-1) - 8*a(n-3) - 4*a(n-4).
n=3: a(n) = 6*a(n-1) - a(n-2) - 28*a(n-3) - 4*a(n-4) + 16*a(n-5) - 4*a(n-6) for n > 8.
n=4: [order 12] for n > 14.
n=5: [order 20] for n > 22.
n=6: [order 46] for n > 48.
n=7: [order 92] for n > 94.
Comments