A229541 Number T(n,k) of partitions of n^2 into squares with each number of parts k; irregular triangle T(n,k), 1 <= k <= n^2.
1, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 2, 1, 1, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1, 2, 1, 4, 1, 1, 4, 2, 1, 4, 2, 1, 2, 1, 1, 2, 1, 1, 2, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1
Offset: 1
Examples
The irregular triangle begins: \ k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 ... n 1 1 2 1 0 0 1 3 1 0 1 0 0 1 0 0 1 4 1 0 0 1 1 0 1 1 0 1 0 0 1 0 0 1 5 1 0 1 1 1 2 1 1 2 1 0 1 1 0 1 1 0 1 ... 6 1 0 1 2 1 4 1 1 4 2 1 4 2 1 2 1 1 2 ... 7 1 0 1 2 2 3 4 5 3 6 6 2 5 5 2 5 4 2 ... 8 1 0 0 1 5 2 7 9 5 11 8 5 12 8 6 12 8 6 ... 9 1 0 3 2 2 10 9 9 16 16 14 17 16 14 19 18 13 20 ... Length of row n is n^2. For n = 3, the 4 partitions are: Square side 1 2 3 Number of Parts 9 0 0 9 5 1 0 6 1 2 0 3 0 0 1 1 As each partition has a different number of parts, T(3,1) = 1, T(3,3) = 1, T(3,6) = 1, T(3,9) = 1.
Links
- Christopher Hunt Gribble, Rows 1..21 flattened
- Christopher Hunt Gribble, C++ program
Crossrefs
Cf. A037444.
Formula
It appears that T(n+1,g(n+1):(n+1)^2) = T(n,f(n):n^2) where f(1) = 1, f(2) = 1, f(n) = Sum(floor(n/2)), n >= 3, g(2) = 4, g(3) = 6, g(n) = Sum(floor((n+3)/2)) + 5, n >= 4. In addition, g(n+1) - f(n) = 2n + 1 for all n.
Comments