A229546 Numbers n such that n + product_of_digits(n) is a palindrome.
0, 1, 2, 3, 4, 16, 28, 39, 43, 64, 89, 101, 127, 163, 166, 174, 179, 188, 202, 214, 236, 247, 252, 296, 303, 329, 341, 348, 354, 359, 366, 372, 385, 387, 393, 404, 426, 442, 445, 455, 463, 465, 489, 505, 525, 536, 546, 567, 568, 571, 578, 589, 591, 606, 618, 622, 629, 658, 659, 664, 667, 707, 734, 749, 753, 808, 812
Offset: 1
Examples
329 + (3*2*9) = 383 (a palindrome). So, 329 is in this sequence.
Links
- Harvey P. Dale, Table of n, a(n) for n = 1..1000
Crossrefs
Cf. A007954.
Programs
-
Mathematica
Select[Range[0,1000],PalindromeQ[#+Times@@IntegerDigits[#]]&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, Jan 08 2019 *)
-
PARI
for(n=0, 10^3,d=digits(n);D=digits(n+prod(i=1,#d,d[i]));if(Vecrev(D)==D,print1(n,", "))) \\ Derek Orr, Mar 22 2015
-
Python
def rev(n): return int(''.join(reversed(str(n)))) def DP(n): p = 1 for i in str(n): p *= int(i) return p {print(n,end=', ') for n in range(10**3) if rev(n+DP(n))==n+DP(n)} # Simplified by Derek Orr, Mar 22 2015
Comments