A229761 Zeroless numbers n such that n and n - (product of digits of n) are both palindromes.
1, 2, 3, 4, 5, 6, 7, 8, 9, 252, 676, 777, 838, 868, 919, 929, 939, 15451, 15851, 25152, 25252, 25352, 25452, 25552, 25652, 25752, 25852, 25952, 29592, 36563, 51415, 51815, 52125, 52225, 52325, 52425, 52525, 52625, 52725, 52825, 52925, 63536, 92529, 93939, 97779, 1455541, 1545451, 1558551, 1594951
Offset: 1
Examples
929 - (9*2*9) = 767 (another palindrome). So, 929 is a member of this sequence.
Links
- Chai Wah Wu, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
bpQ[n_]:=DigitCount[n,10,0]==0&&AllTrue[{n,n-Times@@IntegerDigits[n]},PalindromeQ]; Select[Range[16*10^5],bpQ] (* Harvey P. Dale, Nov 11 2024 *)
-
PARI
pal(n)=d=digits(n);Vecrev(d)==d for(n=1,10^7,d=digits(n);p=prod(i=1,#d,d[i]);if(p&&pal(n)&&pal(n-p),print1(n,", "))) \\ Derek Orr, Apr 05 2015
-
Python
def DP(n): p = 1 for i in str(n): p *= int(i) return p def pal(n): r = '' for i in str(n): r = i + r return r == str(n) {print(n, end=', ') for n in range(1, 10**6) if DP(n) and pal(n) and pal(n-DP(n))} ## Simplified by Derek Orr, Apr 05 2015
Extensions
More terms from Derek Orr, Apr 05 2015
Comments