cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229549 Numbers k such that k*(sum of digits of k) is a palindrome.

Original entry on oeis.org

0, 1, 2, 3, 11, 22, 42, 53, 56, 101, 111, 113, 121, 124, 182, 187, 202, 272, 353, 434, 515, 572, 616, 683, 739, 829, 888, 1001, 1111, 1357, 1507, 1508, 1624, 1717, 2002, 2074, 2852, 3049, 3146, 3185, 3326, 3342, 3687, 3747, 4058, 4066, 4391, 4719, 4724, 5038, 7579, 8569, 9391, 9471
Offset: 1

Views

Author

Derek Orr, Sep 26 2013

Keywords

Examples

			829*(8+2+9) = 15751 (palindrome), so 829 is a term of this sequence.
		

Crossrefs

Cf. A057147.

Programs

  • Mathematica
    palQ[n_] := Block[{d = IntegerDigits@ n}, d == Reverse@ d]; Select[Range@ 10000, palQ[# Plus @@ IntegerDigits@ #] &] (* Michael De Vlieger, Apr 12 2015 *)
    Select[Range[0,10000],PalindromeQ[# Total[IntegerDigits[#]]]&] (* Harvey P. Dale, Jun 30 2025 *)
  • PARI
    ispal(n)=d=digits(n);d==Vecrev(d)
    for(n=0,10^4,s=sumdigits(n);if(ispal(n*s),print1(n,", "))) \\ Derek Orr, Apr 10 2015
  • Python
    def ispal(n):
        r = ''
        for i in str(n):
            r = i + r
        return n == int(r)
    def DS(n):
        s = 0
        for i in str(n):
            s += int(i)
        return s
    {print(n, end=', ') for n in range(10**4) if ispal(n*DS(n))}
    ## Simplified by Derek Orr, Apr 10 2015
    

Extensions

More terms from Derek Orr, Apr 10 2015