cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A229557 Array read by antidiagonals. Rows are the denominators of consecutive harmonic transforms starting with a first row 1, 1, 1,....

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 3, 1, 1, 1, 12, 33, 5, 1, 1, 1, 60, 825, 365, 8, 1, 1, 1, 20, 113025, 810665, 5992, 13, 1, 1, 1, 140, 5538225, 286794631705, 5886103384, 164541, 21, 1, 1, 1, 280, 60920475, 5619905141583441965, 4630449259971272605672, 14469935305431, 1031079, 34, 1, 1, 1
Offset: 1

Views

Author

Franz Vrabec, Sep 26 2013

Keywords

Comments

The "harmonic transform" of a sequence of positive numbers a(i) is the sequence h(n) of the partial sums of their reciprocals: h(n)=sum_{i=1..n} 1/a(i).

Examples

			Table begins
1, 1,   1,      1,...
1, 1,   1,      1,...
1, 2,   6,     12,...
1, 3,  33,    825,...
1, 5, 365, 810665,...
		

Crossrefs

Cf. A229556 (numerators).
Rows 1-4 are A000012(n), A000012(n), A002805(n), A124432(n+1).
Columns 1-2 are A000012(n), A000045(n+1).

Programs

  • Maple
    A229556A := proc(n,k)
        option remember;
        if n = 1 then
            1;
        else
            add( 1/procname(n-1,c),c=1..k) ;
        end if;
    end proc:
    A229557 := proc(n,k)
        denom(A229556A(n,k)) ;
    end proc:
    for d from 2 to 12 do
        for k from d-1 to 1 by -1 do
            printf("%d,",A229557(d-k,k)) ;
        end do:
    end do:

A350834 Number of ways to tile an n X n right triangle with squares and dominoes, where vertical dominoes are only allowed in the largest vertical column.

Original entry on oeis.org

1, 1, 3, 11, 73, 749, 12657, 343693, 15140923, 1078147567, 124268659473, 23172219304577, 6991754237772409, 3413365649747365697, 2696315730346059254139, 3446235324323962173174283, 7127008624714819485698797681, 23848280807640171362927751869341
Offset: 0

Views

Author

Greg Dresden and Tianle Tina Yao, Jun 12 2022

Keywords

Comments

This is the third column in A229556.

Examples

			Here is one of the 73 tilings for the n=4 case. Note that vertical dominoes are only allowed in the "first" column.
.  _
  | |_
  |_|_|_
  | |___|_
  |_|_|___|
		

Crossrefs

Programs

  • Mathematica
    T[0] = 1; T[1] = 1; T[n_] := T[n] = Fibonacci[n + 1] T[n - 1] + (Fibonacci[n] Fibonacci[n - 1]) T[n - 2]; Table[T[n], {n, 0, 20}]

Formula

a(n) = Fibonacci(n+1)*a(n-1) + Fibonacci(n)*Fibonacci(n-1)*a(n-2).
a(n) = P(n+1) + Sum_{i=2..n} a(i-1)*Fibonacci(i-1)*Fibonacci(n-(i-1))*P(n)/P(i), where P(n) = A003266(n) the product of the first n Fibonacci numbers. - Greg Dresden and Tianle Tina Yao, Jul 03 2022
Showing 1-2 of 2 results.