cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229637 T(n,k) = number of defective 3-colorings of an n X k 0..2 array connected horizontally, diagonally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 0, 0, 1, 6, 0, 3, 40, 39, 0, 12, 122, 244, 202, 0, 40, 488, 1109, 1496, 925, 0, 120, 1608, 6031, 10227, 8800, 3924, 0, 336, 5392, 28448, 77620, 89331, 50084, 15795, 0, 896, 17368, 136778, 535671, 960325, 747299, 277996, 61182, 0, 2304, 55232, 633328
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Comments

Table starts
.0.....0.......1........3.........12..........40...........120............336
.0.....6......40......122........488........1608..........5392..........17368
.0....39.....244.....1109.......6031.......28448........136778.........633328
.0...202....1496....10227......77620......535671.......3723370.......25022190
.0...925....8800....89331.....960325.....9722206......98015235......960209886
.0..3924...50084...747299...11485716...170405645....2495874984....35693194243
.0.15795..277996..6049298..133784624..2902520386...61836040854..1290897457785
.0.61182.1513104.47723226.1525870912.48303362606.1498317588826.45634751291449

Examples

			Some solutions for n=3, k=4:
  0 1 0 2     0 1 0 1     0 1 0 2     0 1 0 0     0 1 1 2
  2 1 0 2     2 1 0 1     2 2 0 1     0 2 1 2     0 1 0 2
  2 1 2 0     1 2 0 1     1 1 0 1     0 2 1 0     0 1 0 1
		

Crossrefs

Column 2 is A229600.
Row 1 is A052482(n-2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = 9*a(n-1) - 27*a(n-2) + 27*a(n-3) for n > 5
k=3: a(n) = 15*a(n-1) - 81*a(n-2) + 185*a(n-3) - 162*a(n-4) + 60*a(n-5) - 8*a(n-6) for n > 7.
k=4: [order 6] for n > 9.
k=5: [order 18] for n > 20.
k=6: [order 27] for n > 30.
k=7: [order 57] for n > 60.
Empirical for row n:
n=1: a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) for n > 6.
n=2: a(n) = 6*a(n-1) - 6*a(n-2) - 16*a(n-3) + 12*a(n-4) + 24*a(n-5) + 8*a(n-6).
n=3: [order 9] for n > 12.
n=4: [order 18] for n > 21.
n=5: [order 30] for n > 33.
n=6: [order 69] for n > 72.