A229654 Quadrisection a(4n+k) gives k-th differences of a for k=0..3 with a(n)=0 for n<3 and a(3)=1.
0, 0, 0, 1, 0, 0, 1, -3, 0, 1, -2, 3, 1, -1, 1, 0, 0, 0, 1, -6, 0, 1, -5, 12, 1, -4, 7, -9, -3, 3, -2, -2, 0, 1, -4, 12, 1, -3, 8, -15, -2, 5, -7, 7, 3, -2, 0, 4, 1, -2, 4, -7, -1, 2, -3, 4, 1, -1, 1, -1, 0, 0, 0, 1, 0, 0, 1, -9, 0, 1, -8, 21, 1, -7, 13, -18
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..65536
Programs
-
Maple
a:= proc(n) option remember; (m-> `if`(n<4, `if`(n=3, 1, 0), add( a(q+m-j)*(-1)^j*binomial(m, j), j=0..m)))(irem(n, 4, 'q')) end: seq(a(n), n=0..100);
-
Mathematica
a[n_] := a[n] = Module[{ m, q}, {q, m} = QuotientRemainder[n, 4]; If[n < 4, If[n == 3, 1, 0], Sum[a[q + m - j]*(-1)^j*Binomial[m, j], {j, 0, m}]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Jun 09 2018, from Maple *)
Formula
a(4*n) = a(n),
a(4*n+1) = a(n+1) - a(n),
a(4*n+2) = a(n+2) - 2*a(n+1) + a(n),
a(4*n+3) = a(n+3) - 3*a(n+2) + 3*a(n+1) - a(n).