cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229694 T(n,k) = number of defective 3-colorings of an n X k 0..2 array connected horizontally and antidiagonally with exactly two mistakes, and colors introduced in row-major 0..2 order.

Original entry on oeis.org

0, 0, 0, 1, 3, 0, 3, 43, 40, 0, 12, 245, 626, 336, 0, 40, 1171, 5077, 6732, 2304, 0, 120, 5077, 35825, 80757, 62856, 14080, 0, 336, 20691, 230383, 848937, 1125333, 539568, 79872, 0, 896, 80757, 1400413, 8186713, 17724789, 14461173, 4377888, 430080, 0
Offset: 1

Views

Author

R. H. Hardin, Sep 27 2013

Keywords

Examples

			Some solutions for n=3, k=4:
  0 1 2 1     0 1 0 2     0 1 0 2     0 0 1 2     0 1 0 2
  0 1 0 2     0 2 0 2     0 2 1 0     1 0 0 1     0 2 1 1
  1 2 1 1     2 1 2 0     2 2 1 2     2 1 2 0     1 0 2 2
Table starts
.0......0........1..........3...........12............40.............120
.0......3.......43........245.........1171..........5077...........20691
.0.....40......626.......5077........35825........230383.........1400413
.0....336.....6732......80757.......848937.......8186713........75035643
.0...2304....62856....1125333.....17724789.....258006388......3583403667
.0..14080...539568...14461173....342532665....7551515197....159377253183
.0..79872..4377888..175867605...6279934941..210095323918...6749642728251
.0.430080.34105536.2054728053.110801828529.5632122625852.275739382892979
		

Crossrefs

Column 2 is A002700(n+1).
Row 1 is A052482(n-2).

Formula

Empirical for column k:
k=1: a(n) = a(n-1).
k=2: a(n) = 12*a(n-1) - 48*a(n-2) + 64*a(n-3).
k=3: a(n) = 18*a(n-1) - 108*a(n-2) + 216*a(n-3) for n > 4.
k=4: a(n) = 27*a(n-1) - 243*a(n-2) + 729*a(n-3) for n > 4.
k=5: [order 6] for n > 7.
k=6: [order 9] for n > 11.
k=7: [order 12] for n > 14.
Empirical for row n:
n=1: a(n) = 6*a(n-1) - 12*a(n-2) + 8*a(n-3) for n > 6.
n=2: a(n) = 9*a(n-1) - 27*a(n-2) + 27*a(n-3) for n > 6.
n=3: a(n) = 15*a(n-1) - 81*a(n-2) + 185*a(n-3) - 162*a(n-4) + 60*a(n-5) - 8*a(n-6) for n > 10.
n=4: [order 9] for n > 17.
n=5: [order 21] for n > 27.
n=6: [order 29] for n > 39.
n=7: [order 86] for n > 94.