cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229747 Largest prime factor of 4^(2*n+1)+1.

Original entry on oeis.org

5, 13, 41, 113, 109, 2113, 1613, 1321, 26317, 525313, 14449, 30269, 268501, 279073, 536903681, 384773, 4327489, 47392381, 231769777, 21841, 43249589, 1759217765581, 29247661, 140737471578113, 4981857697937, 1326700741, 1801439824104653, 3630105520141
Offset: 0

Views

Author

Colin Barker, Sep 28 2013

Keywords

Comments

4^(2*n+1)+1 = 2^(2*(2*n+1))+1 = (2^(2*n+1)-2^(n+1)+1) * (2^(2*n+1)+2^(n+1)+1).
For all n, the smallest prime factor of 4^(2*n+1)+1 is 5.
Therefore, the present sequence also gives the largest prime factor of (4^(2*n+1)+1)/5 = A299960(n), for all n > 0. See A299959 for the smallest prime factor of this. - M. F. Hasler, Feb 27 2018

Examples

			For n=7, 4^(2*n+1)+1 = 1073741825 = 5*5*13*41*61*1321. So a(7)=1321.
		

Crossrefs

Cf. A207262. Bisection of A274903.

Programs

  • Mathematica
    Table[FactorInteger[4^(2n+1)+1][[-1,1]],{n,0,30}] (* Harvey P. Dale, Mar 10 2018 *)
  • PARI
    a(n) = {
      f=factor(2^(2*n+1)-2^(n+1)+1);
      g=factor(2^(2*n+1)+2^(n+1)+1);
      max(f[matsize(f)[1],1], g[matsize(g)[1],1])
    }

Formula

a(n) = A006530(A052539(2n+1)) = A006530(A207262(n+1)), and for n > 1, a(n) = A006530(A299960(n)) = A006530(A052539(2n+1)/5). \\ M. F. Hasler, Feb 27 2018
a(n) = max(A229767(n), A229768(n)), for n >= 1. - Daniel Suteu, Jun 08 2022