A229785 Partial sums of A157129.
1, 2, 4, 6, 7, 8, 9, 10, 12, 14, 16, 18, 19, 20, 22, 24, 25, 26, 28, 30, 31, 32, 33, 34, 36, 38, 40, 42, 43, 44, 45, 46, 48, 50, 52, 54, 55, 56, 58, 60, 61, 62, 63, 64, 66, 68, 70, 72, 73, 74, 76, 78, 79, 80, 81, 82, 84, 86, 88, 90, 91, 92, 94, 96, 97, 98, 100, 102, 103, 104
Offset: 1
Keywords
Formula
a(n)=(3/2)n+O(1). More precisely, let b(n)=3*n-2*a(n); then b(n) satisfies the following recurrence modulo 12: b(n)=1,2,1,0,1,2,3,4,3,2,1 for n=1,2,3,4,5,6,7,8,9,10,11. Then for k>=1 we have b(12k)=b(4k), b(12k+1)=b(4k+1), b(12k+2)=b(4k+2), b(12k+2)=b(4k+2), b(12k+3)=b(4k+2)-1, b(12k+4)=b(4k+2)-2, b(12k+5)=b(4k+2)-1, b(12k+6)=b(4k+2), b(12k+7)=4-b(4k+3), b(12k+8)=4-b(4k+4), b(12k+9)=4-b(4k+3), b(12k+10)=4-b(4k+2), b(12k+11)=b(4k+3).
Comments