cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229817 Even bisection gives sequence a itself, n->a(2*(2*n+k)-1) gives k-th differences of a for k=1..2 with a(n)=n for n<2.

Original entry on oeis.org

0, 1, 1, -1, 1, 0, -1, -2, 1, -2, 0, 4, -1, 2, -2, -3, 1, -1, -2, 0, 0, -1, 4, 0, -1, -1, 2, 4, -2, 3, -3, -6, 1, -3, -1, 5, -2, 2, 0, 2, 0, 4, -1, -9, 4, -5, 0, 8, -1, 3, -1, -7, 2, -4, 4, 3, -2, -1, 3, 5, -3, 4, -6, -6, 1, -2, -3, 1, -1, -1, 5, 3, -2, 2, 2
Offset: 0

Views

Author

Alois P. Heinz, Sep 30 2013

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local m, q, r;
          m:= (irem(n, 4, 'q')+1)/2;
          `if`(n<2, n, `if`(irem(n, 2, 'r')=0, a(r),
          add(a(q+m-j)*(-1)^j*binomial(m, j), j=0..m)))
        end:
    seq(a(n), n=0..100);
  • Mathematica
    a[n_] := a[n] = Module[{m, q, r}, {q, m} = QuotientRemainder[n, 4]; m = (m + 1)/2; If[n<2, n, If[Mod[n, 2]==0, a[Quotient[n, 2]], Sum[a[q+m-j] * (-1)^j * Binomial[m, j], {j, 0, m}]]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Feb 22 2017, translated from Maple *)

Formula

a(2*n) = a(n),
a(4*n+1) = a(n+1) - a(n),
a(4*n+3) = a(n+2) - 2*a(n+1) + a(n).