cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229825 Even bisection gives sequence a itself, n->a(2*(10*n+k)-1) gives k-th differences of a for k=1..10 with a(n)=n for n<2.

Original entry on oeis.org

0, 1, 1, -1, 1, -1, -1, 7, 1, -21, -1, 49, -1, -91, 7, 119, 1, -57, -21, -179, -1, 0, 49, -2, -1, 6, -91, -14, 7, 28, 119, -42, 1, 28, -57, 62, -21, -236, -179, 332, -1, -2, 0, 4, 49, -8, -2, 14, -1, -14, 6, -14, -91, 90, -14, -174, 7, 96, 28, 396, 119, 2, -42
Offset: 0

Views

Author

Alois P. Heinz, Sep 30 2013

Keywords

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; local m, q, r;
          m:= (irem(n, 20, 'q')+1)/2;
          `if`(n<2, n, `if`(irem(n, 2, 'r')=0, a(r),
          add(a(q+m-j)*(-1)^j*binomial(m, j), j=0..m)))
        end:
    seq(a(n), n=0..100);
  • Mathematica
    a[n_] := a[n] = Module[{m, q, r, q2, r2}, {q, r} = QuotientRemainder[n, 20]; m = (r+1)/2; If[n<2, n, {q2, r2} = QuotientRemainder[n, 2]; If[r2 == 0, a[q2], Sum[a[q+m-j]*(-1)^j*Binomial[m, j], {j, 0, m}]]]]; Table[a[n], {n, 0, 100}] (* Jean-François Alcover, Mar 08 2017, translated from Maple *)

Formula

a(2*n) = a(n),
a(2*(10*n+k)-1) = Sum_{j=0..k} (-1)^j * C(k,j) * a(n+k-j) for k=1..10.