A229827 Number of circular permutations i_1,...,i_n of 1,...,n such that the n numbers i_1^2+i_2, i_2^2+i_3, ..., i_{n-1}^2+i_n, i_n^2+i_1 form a complete system of residues modulo n.
0, 0, 0, 4, 0, 24, 0, 0, 0, 5308, 0, 123884, 0, 0, 0, 147288372, 0, 7238567052, 0, 0, 0
Offset: 2
Examples
a(5) = 4 due to the circular permutations (1,3,4,5,2), (1,4,2,3,5), (1,5,2,4,3), (1,5,4,2,3). a(7) > 0 due to the circular permutation (1,2,3,7,4,6,5). a(11) > 0 due to the circular permutation (1,2,3,4,6,5,9,11,10,8,7).
Links
- Zhi-Wei Sun, A combinatorial conjecture on finite fields, a message to Number Theory List, Sept. 30, 2013.
- Zhi-Wei Sun, Some new problems in additive combinatorics , preprint, arXiv:1309.1679 [math.NT], 2013-2014.
Programs
-
Mathematica
(* A program to compute desired circular permutations for n = 7. *) V[i_]:=Part[Permutations[{2,3,4,5,6,7}],i] m=0 Do[If[Length[Union[Table[Mod[If[j==0,1,Part[V[i],j]]^2+If[j<6,Part[V[i],j+1],1],7],{j,0,6}]]]<7,Goto[aa]]; m=m+1;Print[m,":"," ",1," ",Part[V[i],1]," ",Part[V[i],2]," ",Part[V[i],3]," ",Part[V[i],4]," ",Part[V[i],5]," ",Part[V[i],6]];Label[aa];Continue,{i,1,6!}]
Extensions
a(11)-a(22) from Bert Dobbelaere, Apr 23 2021
Comments