cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229839 Consider all 60-degree triangles with sides A < B < C. The sequence gives the values of C.

Original entry on oeis.org

8, 15, 16, 21, 24, 30, 32, 35, 40, 42, 45, 48, 55, 56, 60, 63, 64, 65, 70, 72, 75, 77, 80, 84, 88, 90, 91, 96, 99, 104, 105, 110, 112, 117, 119, 120, 126, 128, 130, 133, 135, 136, 140, 143, 144, 147, 150, 152, 153, 154, 160, 165, 168, 171, 175, 176, 180, 182
Offset: 1

Views

Author

Colin Barker, Oct 01 2013

Keywords

Comments

A009005 gives the values of A, and A050931 gives the values of B.
The side n of an equilateral triangle for which a nontrivial integral cevian of length less than n exists, which divides an edge into two integral parts. - Colin Barker, Sep 09 2014

Examples

			16 appears in the sequence because there exists a 60-degree triangle with sides 6, 14 and 16.
		

Crossrefs

Programs

  • Mathematica
    list={};cmax=182;
    Do[If[IntegerQ[Sqrt[e^2-e t+t^2]],AppendTo[list,e]],{e,2,cmax},{t,1,e-1}]
    list//DeleteDuplicates (* Herbert Kociemba, Apr 25 2021 *)
  • PARI
    \\ Gives values of C not exceeding cmax.
    \\ e.g. t60c(60) gives [8, 15, 16, 21, 24, 30, 32, 35, 40, 42, 45, 48, 55, 56, 60]
    t60c(cmax) = {
      v=pt60c(cmax);
      s=[];
      for(i=1, #v,
        for(m=1, cmax\v[i],
          if(v[i]*m<=cmax, s=concat(s, v[i]*m))
        )
      );
      vecsort(s,,8)
    }
    \\ Gives values of C not exceeding cmax in primitive triangles.
    \\ e.g. pt60c(115) gives [8, 15, 21, 35, 40, 48, 55, 65, 77, 80, 91, 96, 99, 112]
    pt60c(cmax) = {
      s=[];
      for(m=1, ceil(sqrt(cmax+1)),
       for(n=1, m-1,
          if((m-n)%3!=0 && gcd(m, n)==1,
            if(2*m*n+m*m<=cmax, s=concat(s, 2*m*n+m*m))
          )
        )
      );
      vecsort(s,,8)
    }