A229839 Consider all 60-degree triangles with sides A < B < C. The sequence gives the values of C.
8, 15, 16, 21, 24, 30, 32, 35, 40, 42, 45, 48, 55, 56, 60, 63, 64, 65, 70, 72, 75, 77, 80, 84, 88, 90, 91, 96, 99, 104, 105, 110, 112, 117, 119, 120, 126, 128, 130, 133, 135, 136, 140, 143, 144, 147, 150, 152, 153, 154, 160, 165, 168, 171, 175, 176, 180, 182
Offset: 1
Keywords
Examples
16 appears in the sequence because there exists a 60-degree triangle with sides 6, 14 and 16.
Links
- Wikipedia, Integer triangle
- Wikipedia, Cevian
Programs
-
Mathematica
list={};cmax=182; Do[If[IntegerQ[Sqrt[e^2-e t+t^2]],AppendTo[list,e]],{e,2,cmax},{t,1,e-1}] list//DeleteDuplicates (* Herbert Kociemba, Apr 25 2021 *)
-
PARI
\\ Gives values of C not exceeding cmax. \\ e.g. t60c(60) gives [8, 15, 16, 21, 24, 30, 32, 35, 40, 42, 45, 48, 55, 56, 60] t60c(cmax) = { v=pt60c(cmax); s=[]; for(i=1, #v, for(m=1, cmax\v[i], if(v[i]*m<=cmax, s=concat(s, v[i]*m)) ) ); vecsort(s,,8) } \\ Gives values of C not exceeding cmax in primitive triangles. \\ e.g. pt60c(115) gives [8, 15, 21, 35, 40, 48, 55, 65, 77, 80, 91, 96, 99, 112] pt60c(cmax) = { s=[]; for(m=1, ceil(sqrt(cmax+1)), for(n=1, m-1, if((m-n)%3!=0 && gcd(m, n)==1, if(2*m*n+m*m<=cmax, s=concat(s, 2*m*n+m*m)) ) ) ); vecsort(s,,8) }
Comments