A246918 The length of the shortest nontrivial integral cevian of an equilateral triangle of side n that divides an edge into two integral parts, or 0 if no such cevian exists.
0, 0, 7, 0, 7, 14, 13, 7, 21, 14, 31, 28, 43, 26, 13, 14, 73, 42, 91, 28, 19, 62, 133, 21, 35, 86, 63, 52, 211, 26, 241, 28, 37, 146, 31, 84, 343, 182, 49, 35, 421, 38, 463, 124, 39, 266, 553, 42, 91, 70, 79, 172, 703, 126, 49, 49, 97, 422, 871, 52, 931, 482
Offset: 1
Keywords
Links
- Colin Barker, Table of n, a(n) for n = 1..10000
- Wikipedia, Cevian
Programs
-
PARI
\\ Returns the length of the shortest integral cevian of an equilateral triangle of side n. shortest(n) = { s=[]; m=12*n^2; fordiv(m, f, g=m\f; if(f<=g && (f+g)%2==0, x=(f+g)\2; if(x%4==0, s=concat(s, x\4) ) ) ); s=Colrev(s)~; if(#s==1, return(0)); for(i=1, #s, if(s[i]!=n, return(s[i]))) } vector(100, n, shortest(n))
Comments