A229849 Consider all primitive 120-degree triangles with sides A < B < C. The sequence gives the values of B.
5, 8, 16, 24, 33, 35, 39, 45, 51, 56, 57, 63, 77, 80, 85, 88, 91, 95, 105, 112, 115, 120, 143, 145, 155, 160, 161, 165, 168, 175, 187, 192, 195, 203, 208, 209, 217, 221, 224, 231, 247, 253, 259, 261, 272, 273, 279, 280, 287, 288, 299, 301, 304, 315, 320, 323
Offset: 1
Keywords
Examples
33 appears in the sequence because there exists a primitive 120-degree triangle with sides 7, 33 and 37.
Links
- Wikipedia, Integer triangle
Programs
-
PARI
\\ Gives values of B not exceeding bmax \\ e.g. pt120b(80) gives [5, 8, 16, 24, 33, 35, 39, 45, 51, 56, 57, 63, 77, 80] pt120b(bmax) = { s=[]; for(m=1, (bmax-1)\2, for(n=1, m-1, if((m-n)%3!=0 && gcd(m, n)==1, a=m*m-n*n; b=n*(2*m+n); if(a>b, b=a); if(b<=bmax, s=concat(s, b)) ) ) ); vecsort(s,,8) }
Comments