A229852 3*h^2, where h is an odd integer not divisible by 3.
3, 75, 147, 363, 507, 867, 1083, 1587, 1875, 2523, 2883, 3675, 4107, 5043, 5547, 6627, 7203, 8427, 9075, 10443, 11163, 12675, 13467, 15123, 15987, 17787, 18723, 20667, 21675, 23763, 24843, 27075, 28227, 30603, 31827, 34347, 35643, 38307, 39675, 42483, 43923
Offset: 1
References
- M. Krizek, F. Luca, L. Somer, 17 Lectures on Fermat Numbers: From Number Theory to Geometry, CMS Books in Mathematics, vol. 9, Springer-Verlag, New York, 2001, pp. 63-65.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
- Wilfrid Keller, Fermat factoring status.
- Eric Weisstein's World of Mathematics, Fermat Number.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
[3*h^2 : h in [1..121 by 2] | not IsZero(h mod 3)];
-
Mathematica
3*Select[Range[1, 121, 2], Mod[#, 3] > 0 &]^2 (* Amiram Eldar, Jan 02 2021 *)
-
PARI
forstep(h=1, 121, 2, if(!(h%3==0), print1(3*h^2, ", ")));
-
PARI
Vec(3*x*(1+24*x+22*x^2+24*x^3+x^4) / ((1-x)^3*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 26 2016
Formula
G.f.: 3*x*(1+24*x+22*x^2+24*x^3+x^4) / ((1-x)^3*(1+x)^2).
a(n) = 3*A104777(n).
From Colin Barker, Jan 26 2016: (Start)
a(n) = 3*(18*n^2+6*(-1)^n*n-18*n-3*(-1)^n+5)/2.
a(n) = 27*n^2-18*n+3 for n even.
a(n) = 27*n^2-36*n+12 for n odd.
(End)
Sum_{n>=1} 1/a(n) = Pi^2/27 (A291050). - Amiram Eldar, Jan 02 2021
Comments