cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A229855 a(n) = 384*n + 257.

Original entry on oeis.org

257, 641, 1025, 1409, 1793, 2177, 2561, 2945, 3329, 3713, 4097, 4481, 4865, 5249, 5633, 6017, 6401, 6785, 7169, 7553, 7937, 8321, 8705, 9089, 9473, 9857, 10241, 10625, 11009, 11393, 11777, 12161, 12545, 12929, 13313, 13697, 14081, 14465, 14849, 15233, 15617, 16001
Offset: 0

Views

Author

Arkadiusz Wesolowski, Oct 01 2013

Keywords

Comments

Every composite Fermat number has at least two divisors of the form 384*n + 257, n > 0.

Crossrefs

Programs

  • Magma
    [384*n+257 : n in [0..40]];
    
  • Maple
    seq(384*n+257, n=0..40);
  • Mathematica
    Table[384*n + 257, {n, 0, 40}]
  • PARI
    for(n=0, 40, print1(384*n+257, ", "));

Formula

G.f.: (257 + 127*x)/(1 - x)^2.
a(n) = 128*A016789(n) + 1.
From Elmo R. Oliveira, Dec 08 2024: (Start)
E.g.f.: exp(x)*(257 + 384*x).
a(n) = 2*a(n-1) - a(n-2) for n > 1. (End)

A229856 Primes of the form 384*k + 257.

Original entry on oeis.org

257, 641, 1409, 3329, 4481, 7937, 9473, 9857, 11393, 11777, 12161, 13313, 13697, 14081, 15233, 16001, 17921, 19073, 19457, 19841, 21377, 23297, 25601, 28289, 30593, 30977, 35201, 35969, 36353, 37889, 38273, 39041, 40193, 40577, 40961, 41729, 43649, 44417
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 01 2013

Keywords

Comments

Every Fermat number greater than 257 has a prime factor of the form 384*k + 257, k > 0.

Crossrefs

Subsequence of A107181 (primes of the form 8x^2+9y^2).

Programs

  • Magma
    [384*n+257 : n in [0..115] | IsPrime(384*n+257)];
  • Mathematica
    Select[Table[384*n + 257, {n, 0, 115}], PrimeQ]

A229854 Primes of the form 384*k + 1.

Original entry on oeis.org

769, 1153, 2689, 3457, 4993, 6529, 7297, 7681, 9601, 10369, 10753, 12289, 13441, 14593, 15361, 18049, 18433, 20353, 21121, 22273, 23041, 26113, 26497, 26881, 29569, 31489, 31873, 32257, 33409, 36097, 37633, 39937, 43777, 45697, 49537, 49921, 52609, 53377
Offset: 1

Views

Author

Arkadiusz Wesolowski, Oct 01 2013

Keywords

Comments

Not every composite Fermat number has a prime factor of the form 384*k + 1.

Crossrefs

Subsequence of A002476 (primes of form 6m + 1).

Programs

  • Magma
    [384*n+1 : n in [1..139] | IsPrime(384*n+1)];
  • Mathematica
    Select[Table[384*n + 1, {n, 139}], PrimeQ]

A351332 Primes congruent to 1 (mod 3) that divide some Fermat number.

Original entry on oeis.org

274177, 319489, 6700417, 825753601, 1214251009, 6487031809, 646730219521, 6597069766657, 25409026523137, 31065037602817, 46179488366593, 151413703311361, 231292694251438081, 1529992420282859521, 2170072644496392193, 3603109844542291969
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 07 2022

Keywords

Comments

Subsequence of A014752.

Examples

			a(1) = 503^2 + 27*28^2 = 274177 is a prime factor of 2^(2^6) + 1;
a(2) = 383^2 + 27*80^2 = 319489 is a prime factor of 2^(2^11) + 1;
a(3) = 887^2 + 27*468^2 = 6700417 is a prime factor of 2^(2^5) + 1;
a(4) = 27017^2 + 27*1884^2 = 825753601 is a prime factor of 2^(2^16) + 1;
a(5) = 2561^2 + 27*6688^2 = 1214251009 is a prime factor of 2^(2^15) + 1;
		

References

  • Allan Cunningham, Haupt-exponents of 2, The Quarterly Journal of Pure and Applied Mathematics, Vol. 37 (1906), pp. 122-145.

Crossrefs

Programs

  • PARI
    isok(p) = if(p%6==1 && isprime(p), my(z=znorder(Mod(2, p))); z>>valuation(z, 2)==1, return(0));

Formula

A002476 INTERSECT A023394.
Showing 1-4 of 4 results.