cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A229499 Palindromic prime numbers == 4 (mod 9).

Original entry on oeis.org

373, 787, 12721, 14341, 18481, 30703, 31513, 32323, 34843, 37273, 38083, 73237, 74047, 77377, 93739, 97879, 98689, 1035301, 1043401, 1092901, 1117111, 1190911, 1215121, 1280821, 1338331, 1362631, 1411141, 1444441, 1452541, 1469641, 1542451, 1550551, 1583851
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 02 2013

Keywords

Crossrefs

Programs

  • Mathematica
    t = {}; Do[z = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[z] && Mod[z, 9] == 4, AppendTo[t, z]], {n, 1, 99999}]; t

A229876 Palindromic prime numbers == 2 (mod 9).

Original entry on oeis.org

2, 11, 101, 191, 353, 929, 13331, 16661, 17471, 19991, 36263, 38783, 70607, 72227, 73037, 74747, 75557, 76367, 78887, 79697, 91019, 94349, 1074701, 1082801, 1123211, 1180811, 1221221, 1262621, 1287821, 1303031, 1311131, 1328231, 1360631, 1508051, 1532351
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 02 2013

Keywords

Crossrefs

Programs

  • Mathematica
    t = {}; Do[z = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[z] && Mod[z, 9] == 2, AppendTo[t, z]], {n, 1, 99999}]; Insert[t, 11, 2]
    Select[Prime[Range[120000]],PalindromeQ[#]&&Mod[#,9]==2&] (* Harvey P. Dale, Jun 02 2024 *)

A229877 Palindromic prime numbers == 1 (mod 9).

Original entry on oeis.org

181, 757, 919, 12421, 16561, 18181, 19891, 30403, 34543, 35353, 70507, 71317, 77977, 78787, 95959, 96769, 97579, 98389, 1008001, 1065601, 1114111, 1163611, 1196911, 1212121, 1245421, 1253521, 1278721, 1286821, 1327231, 1335331, 1343431, 1409041, 1490941
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 02 2013

Keywords

Crossrefs

Programs

  • Mathematica
    t = {}; Do[z = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[z] && Mod[z, 9] == 1, AppendTo[t, z]], {n, 1, 99999}]; t
    Select[Prime[Range[115000]],PalindromeQ[#]&&Mod[#,9]==1&] (* Requires Mathematica version 10 or later *) (* Harvey P. Dale, May 15 2021 *)

A229879 Palindromic prime numbers == 5 (mod 9).

Original entry on oeis.org

5, 131, 383, 797, 10301, 12821, 16061, 19391, 30803, 32423, 35753, 36563, 38183, 76667, 77477, 79997, 94649, 96269, 1003001, 1028201, 1085801, 1093901, 1126211, 1134311, 1150511, 1175711, 1183811, 1208021, 1257521, 1273721, 1281821, 1363631, 1371731, 1412141
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 02 2013

Keywords

Crossrefs

Programs

  • Mathematica
    t = {}; Do[z = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[z] && Mod[z, 9] == 5, AppendTo[t, z]], {n, 1, 99999}]; t

A229880 Palindromic prime numbers == 7 (mod 9).

Original entry on oeis.org

7, 151, 313, 727, 10501, 11311, 13831, 15451, 17971, 30103, 35053, 37573, 70207, 71917, 72727, 78487, 90709, 93139, 94849, 96469, 1062601, 1160611, 1177711, 1193911, 1201021, 1218121, 1242421, 1250521, 1422241, 1447441, 1463641, 1496941, 1520251, 1594951
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 02 2013

Keywords

Crossrefs

Programs

  • Mathematica
    t = {}; Do[z = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[z] && Mod[z, 9] == 7, AppendTo[t, z]], {n, 1, 99999}]; t

A229881 Palindromic prime numbers == 8 (mod 9).

Original entry on oeis.org

10601, 11411, 13931, 14741, 15551, 16361, 30203, 31013, 33533, 35153, 39293, 73637, 79397, 93239, 94049, 94949, 97379, 1022201, 1055501, 1120211, 1129211, 1145411, 1153511, 1178711, 1186811, 1235321, 1243421, 1268621, 1276721, 1300031, 1317131, 1333331
Offset: 1

Views

Author

Shyam Sunder Gupta, Oct 02 2013

Keywords

Crossrefs

Programs

  • Mathematica
    t = {}; Do[z = n*10^(IntegerLength[n] - 1) + FromDigits@Rest@Reverse@IntegerDigits[n]; If[PrimeQ[z] && Mod[z, 9] == 8, AppendTo[t, z]], {n, 1, 99999}]; t
Showing 1-6 of 6 results.