cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229892 Number T(n,k) of k up, k down permutations of [n]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 5, 3, 1, 1, 0, 16, 6, 4, 1, 1, 0, 61, 26, 10, 5, 1, 1, 0, 272, 71, 20, 15, 6, 1, 1, 0, 1385, 413, 125, 35, 21, 7, 1, 1, 0, 7936, 1456, 461, 70, 56, 28, 8, 1, 1, 0, 50521, 10576, 1301, 574, 126, 84, 36, 9, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Oct 02 2013

Keywords

Comments

T(n,k) is defined for n,k >= 0. The triangle contains only the terms with k<=n. T(n,k) = T(n,n) = A000012(n) = 1 for k>n.
T(2*n,n) = C(2*n-1,n) = A088218(n) = A001700(n-1) for n>0.
T(2*n+1,n) = C(2*n,n) = A000984(n).
T(2*n+1,n+1) = C(2n,n-1) = A001791(n) for n>0.

Examples

			Triangle T(n,k) begins:
  1;
  1,    1;
  0,    1,   1;
  0,    2,   1,   1;
  0,    5,   3,   1,  1;
  0,   16,   6,   4,  1,  1;
  0,   61,  26,  10,  5,  1, 1;
  0,  272,  71,  20, 15,  6, 1, 1;
  0, 1385, 413, 125, 35, 21, 7, 1, 1;
		

Crossrefs

Programs

  • Maple
    b:= proc(u, o, t, k) option remember; `if`(u+o=0, 1, add(`if`(t=k,
           b(o-j, u+j-1, 1, k), b(u+j-1, o-j, t+1, k)), j=1..o))
        end:
    T:= (n, k)-> `if`(k+1>=n, 1, `if`(k=0, 0, b(0, n, 0, k))):
    seq(seq(T(n, k), k=0..n), n=0..10);
  • Mathematica
    b[u_, o_, t_, k_] := b[u, o, t, k] = If[u+o == 0, 1, Sum[If[t == k, b[o-j, u+j-1, 1, k], b[u+j-1, o-j, t+1, k]], {j, 1, o}]]; t[n_, k_] := If[k+1 >= n, 1, If[k == 0, 0, b[0, n, 0, k]]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)

Formula

T(7,3) = 20: 1237654, 1247653, 1257643, 1267543, 1347652, 1357642, 1367542, 1457632, 1467532, 1567432, 2347651, 2357641, 2367541, 2457631, 2467531, 2567431, 3457621, 3467521, 3567421, 4567321.