A229892 Number T(n,k) of k up, k down permutations of [n]; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
1, 1, 1, 0, 1, 1, 0, 2, 1, 1, 0, 5, 3, 1, 1, 0, 16, 6, 4, 1, 1, 0, 61, 26, 10, 5, 1, 1, 0, 272, 71, 20, 15, 6, 1, 1, 0, 1385, 413, 125, 35, 21, 7, 1, 1, 0, 7936, 1456, 461, 70, 56, 28, 8, 1, 1, 0, 50521, 10576, 1301, 574, 126, 84, 36, 9, 1, 1
Offset: 0
Examples
Triangle T(n,k) begins: 1; 1, 1; 0, 1, 1; 0, 2, 1, 1; 0, 5, 3, 1, 1; 0, 16, 6, 4, 1, 1; 0, 61, 26, 10, 5, 1, 1; 0, 272, 71, 20, 15, 6, 1, 1; 0, 1385, 413, 125, 35, 21, 7, 1, 1;
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Crossrefs
Programs
-
Maple
b:= proc(u, o, t, k) option remember; `if`(u+o=0, 1, add(`if`(t=k, b(o-j, u+j-1, 1, k), b(u+j-1, o-j, t+1, k)), j=1..o)) end: T:= (n, k)-> `if`(k+1>=n, 1, `if`(k=0, 0, b(0, n, 0, k))): seq(seq(T(n, k), k=0..n), n=0..10);
-
Mathematica
b[u_, o_, t_, k_] := b[u, o, t, k] = If[u+o == 0, 1, Sum[If[t == k, b[o-j, u+j-1, 1, k], b[u+j-1, o-j, t+1, k]], {j, 1, o}]]; t[n_, k_] := If[k+1 >= n, 1, If[k == 0, 0, b[0, n, 0, k]]]; Table[Table[t[n, k], {k, 0, n}], {n, 0, 10}] // Flatten (* Jean-François Alcover, Dec 17 2013, translated from Maple *)
Formula
T(7,3) = 20: 1237654, 1247653, 1257643, 1267543, 1347652, 1357642, 1367542, 1457632, 1467532, 1567432, 2347651, 2357641, 2367541, 2457631, 2467531, 2567431, 3457621, 3467521, 3567421, 4567321.
Comments