cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A232499 Number of unit squares, aligned with a Cartesian grid, completely within the first quadrant of a circle centered at the origin ordered by increasing radius.

Original entry on oeis.org

1, 3, 4, 6, 8, 10, 11, 13, 15, 17, 19, 20, 22, 24, 26, 28, 30, 33, 35, 37, 39, 41, 45, 47, 48, 50, 52, 54, 56, 60, 62, 64, 66, 67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 89, 90, 94, 96, 98, 102, 104, 106, 108, 110, 112, 114, 115, 117, 119, 123, 125, 127, 129, 131
Offset: 1

Views

Author

Rajan Murthy and Vale Murthy, Nov 24 2013

Keywords

Comments

The interval between terms reflects the number of ways a square integer can be partitioned into the sum of two square integers in an ordered pair. As examples, the increase from a(1) to a(2) from 1 to 3 is due to the inclusion of (1,2) and (2,1); and the increase from a(2) to a(3) is due to the inclusion of (2,2). Larger intervals occur when there are more combinations, such as, between a(17) and a(18) when (1,7), (7,1), and (5,5) are included.

Examples

			When radius of the circle exceeds 2^(1/2), one square is completely within the circle until the radius reaches 5^(1/2) when three squares are completely within the circle.
		

Crossrefs

First differences are in A229904.
The first differences must be odd at positions given in A024517 by proof by symmetry as r^2=2*n^2 is on the x=y line.
The radii corresponding to the terms are given by the square roots of A000404.
Cf. A237707 (3-dimensional analog), A239353 (4-dimensional analog).

Programs

  • Mathematica
    (* An empirical solution *) terms = 100; f[r_] := Sum[Floor[Sqrt[r^2 - n^2]], {n, 1, Floor[r]}]; Clear[g]; g[m_] := g[m] = Union[Table[f[Sqrt[s]], {s, 2, m }]][[1 ;; terms]]; g[m = dm = 4*terms]; g[m = m + dm]; While[g[m] != g[m - dm], Print[m]; m = m + dm]; A232499 = g[m]  (* Jean-François Alcover, Mar 06 2014 *)
Showing 1-1 of 1 results.