A243842 Pair deficit of the most equal partition of n into two parts using standard rounding of the expectations of n, floor(n/2) and n-floor(n/2), assuming equal likelihood of states defined by the number of 2-cycles.
0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 1, 0, 1, 1, 1, 0, 0, 1, 1, 2, 1, 1, 1, 2, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 0, 1, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1
Offset: 0
Keywords
Examples
Trivially, for n = 0,1 no pairs are possible so a(0) and a(1) are 0. For n = 2, the expectation, E(n), equals 0.5. So a(2) = round(E(2)) - round(E(1)) - round(E(1)) = 0. For n = 5 = 2 + 3, E(5) = 20/13, E(2) = 0.5 and E(3) = 0.75 and a(5) = round(E(5)) - round(E(2)) - round(E(3)) = 1.
References
- Oskar Perron, Die Lehre von den Kettenbrüchen Band I, II, B. G. Teubner, 1954.
Links
- S. Chowla, I. N. Hernstein, and W. K. Moore, On recursions connected with symmetric groups. I, Canadian Journal of Mathematics, 3 (1951), 328-334.
- Dongsu Kim, and J.S. Kim, A combinatorial approach to the power of 2 in the number of involutions, arXiv:0902.4311 [math.CO], 2009-2010.
- Dongsu Kim, and J.S. Kim, A combinatorial approach to the power of 2 in the number of involutions, Journal of Combinatorial Theory, Series A 117 (8) (2010): 1082-1094
- Wikipedia, Generalized continued fraction
- Wikipedia, Telephone number (mathematics)
Comments