A229911 Decimal expansion of number whose continued fraction expansion is formed by the difference of consecutive primes (A001223).
1, 4, 0, 8, 2, 4, 8, 3, 4, 6, 0, 1, 8, 7, 4, 7, 8, 4, 4, 1, 8, 3, 1, 9, 6, 2, 4, 9, 5, 6, 4, 8, 5, 9, 4, 4, 8, 0, 2, 8, 7, 8, 9, 1, 3, 6, 4, 1, 7, 0, 9, 5, 3, 4, 6, 0, 5, 2, 8, 6, 2, 6, 5, 3, 9, 1, 0, 5, 6, 6, 5, 3, 3, 6, 6, 1, 1, 5, 3, 8, 1, 6, 2, 8, 4, 7, 7
Offset: 1
Examples
1.408248346018747844183196249564... = [1, 2, 2, 4, 2, 4, 2, 4, 6, 2, 6, 4, 2, 4, 6, ...]
References
- G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 157.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:=proc(q) local a,n,v; v:=array(1..q); a:=1; for n from 1 to q do v[n]:=(ithprime(n+1)-ithprime(n)); od; for n from q by -1 to 1 do a:=v[n]+1/a; od; print(evalf(a,200)); end: P(10^4);
-
Mathematica
m=200;RealDigits[FromContinuedFraction[Differences[Prime[Range[1001]]]],10,m][[1]] (* Zak Seidov, Oct 04 2013 *)
-
PARI
diff(v)=vector(#v-1,i,v[i+1]-v[i]) (M->M[1,1]/M[2,1]*1.)(contfracpnqn(diff(primes(100)))) \\ Charles R Greathouse IV, Oct 04 2013