A229914 Number of pyramid polycubes of a given volume in dimension 3.
1, 3, 7, 16, 33, 63, 117, 202, 344, 566, 908, 1419, 2206, 3334, 4988, 7378, 10778, 15535, 22281, 31547, 44405, 62011, 85939, 118281, 162136, 220494, 298531, 402163, 539181, 719301, 956287, 1265022, 1667973, 2190934, 2867470, 3739797, 4864163, 6303461, 8146863, 10499087, 13493267, 17293169, 22111954
Offset: 1
Keywords
Links
- C. Carré, N. Debroux, M. Deneufchatel, J.-Ph. Dubernard, C. Hillariet, J.-G. Luque, and O. Mallet, Enumeration of Polycubes and Dirichlet Convolutions, J. Int. Seq. 18 (2015) 15.11.4; also hal-00905889, version 1.
Crossrefs
A001931 is an upper bound.
Formula
The generating function for the numbers of pyramids of height h and volumes v_1 , ... v_h is (n_1-n_2+1) *(n_2-n_3+1) *... *(n_{h-1}-n_h+1) *(x_1^{n_1} * ... x_h^{n_h}) / ((1-x_1^{n_1}) *(1-x_1^{n_1}*x_2^{n_2}) *... *(1-x_1^{n_1}*x_2^{n_2}*...x_h^{n_h})).
This sequence is obtained with x_1 = ... = x_h = p by summing over n_1>=, ... >= n_h>=1 and then over h.
Comments