A229953 Numbers k for which k = sigma(sigma(x)) = sigma(sigma(y)) for some x and y such that k = x + y.
4, 8, 32, 60, 128, 8192, 43200, 69360, 120960, 131072, 524288, 4146912, 6549984, 12927600, 13335840, 16329600, 34715520, 51603840, 57879360, 59633280, 107775360, 160797000, 169155840, 252067200, 371226240, 391789440, 436230144, 439883136, 489888000, 657296640
Offset: 1
Keywords
Examples
4 = 2 + 2 = 2*sigma(sigma(2)). 8 = 4 + 4 = 2*sigma(sigma(4)). 32 = 16 + 16 = 2*sigma(sigma(16)). 60 = 23 + 37 = sigma(sigma(23)) = sigma(sigma(37)). 128 = 64 + 64 = 2*sigma(sigma(64)). 8192 = 4096 + 4096 = 2*sigma(sigma(4096)).
Links
- Graeme L. Cohen and Herman J. J. te Riele, Iterating the sum-of-divisors function, Experiment. Math. (1996) vol. 5, no. 2, pp. 91-100 (see merge at n=60 in tree of section 4 page 97).
Programs
-
Maple
with(numtheory); P:=proc(q) local j,n; for n from 1 to q do for j from 1 to trunc(n/2) do if sigma(sigma(j))=sigma(sigma(n-j)) and sigma(sigma(j))=n then print(n); fi; od; od; end: P(10^6);
Extensions
a(7)-a(20) from Giovanni Resta, Oct 06 2013
a(21)-a(30) from Donovan Johnson, Oct 08 2013
Comments