cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229953 Numbers k for which k = sigma(sigma(x)) = sigma(sigma(y)) for some x and y such that k = x + y.

Original entry on oeis.org

4, 8, 32, 60, 128, 8192, 43200, 69360, 120960, 131072, 524288, 4146912, 6549984, 12927600, 13335840, 16329600, 34715520, 51603840, 57879360, 59633280, 107775360, 160797000, 169155840, 252067200, 371226240, 391789440, 436230144, 439883136, 489888000, 657296640
Offset: 1

Views

Author

Paolo P. Lava, Oct 04 2013

Keywords

Comments

A072868 is a subsequence of this sequence. Any term x of A072868 can be expressed as x = 2*sigma(sigma(x/2)).
Note the analogy with amicable pair sums (A180164) which satisfy a similar condition: k = sigma(x) = sigma(y) where k = x + y. - Michel Marcus, Oct 07 2013
When terms do not belong to A072868, then they belong to A159886, and the (x,y) couples are (23,37), (14999,28201), (34673,34687), (55373,65587), (2056961,2089951), (2458187,4091797), (4586987,8340613), (5174363,8161477), (6204767,10124833), (15788453,18927067), (25748273,25855567), (20699927,37179433), (22239647,37393633), ... - Michel Marcus, Oct 08 2013

Examples

			4 = 2 + 2 = 2*sigma(sigma(2)).
8 = 4 + 4 = 2*sigma(sigma(4)).
32 = 16 + 16 = 2*sigma(sigma(16)).
60 = 23 + 37 = sigma(sigma(23)) = sigma(sigma(37)).
128 = 64 + 64 = 2*sigma(sigma(64)).
8192 = 4096 + 4096 = 2*sigma(sigma(4096)).
		

Crossrefs

Programs

  • Maple
    with(numtheory); P:=proc(q) local j,n;
    for n from 1 to q do for j from 1 to trunc(n/2) do
    if sigma(sigma(j))=sigma(sigma(n-j)) and sigma(sigma(j))=n then print(n);
    fi; od; od; end: P(10^6);

Extensions

a(7)-a(20) from Giovanni Resta, Oct 06 2013
a(21)-a(30) from Donovan Johnson, Oct 08 2013