A229955 Triangular array read by rows: 3 dimensional analog of A227997.
8, 152, 64, 5056, 2432, 512, 205720, 104000, 29184, 4096, 9305152, 4828544, 1525248, 311296, 32768, 449404224, 236984448, 79898624, 19226624, 3112960, 262144, 22695553536, 12099474432, 4251479040, 1123909632, 221839360, 29884416, 2097152, 1183891745688, 636162156096, 230017430016, 64636047360, 14330265600, 2413559808, 278921216, 16777216
Offset: 1
Examples
8, 152, 64, 5056, 2432, 512, 205720, 104000, 29184, 4096, 9305152, 4828544, 1525248, 311296, 32768, 449404224, 236984448, 79898624, 19226624, 3112960, 262144
Programs
-
Mathematica
nn=6;a=Sum[Binomial[2n,n]^3x^n,{n,0,nn}];Map[Select[#,#>0&]&,Drop[CoefficientList[Series[1/(1-y(1-1/a)),{x,0,nn}],{x,y}],1]]//Grid
Formula
G.f.: 1/( 1 - y*(1 - 1/A(x)) ) where A(x) is the o.g.f. for A002897.
Generally for such walks in N dimensions: 1/( 1 - y*(1 - 1/B(x)) ) where B(x) = Sum_{n>=0} binomial(2n,n)^N*x^n.
Comments