cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A229963 a(n) = 11*binomial(10*n + 11, n)/(10*n + 11) .

Original entry on oeis.org

1, 11, 165, 2860, 53900, 1072797, 22188859, 472214600, 10273141395, 227440759700, 5107663394691, 116068178638776, 2664012608972000, 61668340817988135, 1438101958237201950, 33753007927148177360, 796704536753910327114
Offset: 0

Views

Author

Tim Fulford, Oct 04 2013

Keywords

Comments

Fuss-Catalan sequence is a(n,p,r) = r*binomial(n*p + r,n)/(n*p + r), where p = 10, r = 11.

Crossrefs

Cf. A000245 (k = 3), A006629 (k = 4), A196678 (k = 5), A233668 (k = 6), A233743 (k = 7), A233835 (k = 8), A234467 (k = 9), A232265 (k = 10).

Programs

  • Magma
    [11*Binomial(10*n+11,n)/(10*n+11) : n in [0..20]]; // Vincenzo Librandi, Jan 10 2014
  • Mathematica
    Table[11/(10 n + 11) Binomial[10 n + 11, n], {n, 0, 40}] (* Vincenzo Librandi, Jan 10 2014 *)
  • PARI
    a(n) = 11*binomial(10*n+11,n)/(10*n+11);
    
  • PARI
    {a(n)=local(B=1); for(i=0, n, B=(1+x*B^(10/11))^11+x*O(x^n)); polcoeff(B, n)}
    

Formula

G.f. satisfies: A(x) = {1 + x*A(x)^(p/r)}^r, where p = 10, r = 11.
From _Peter Bala, Oct 16 2015: (Start)
O.g.f. A(x) = 1/x * series reversion (x*C(-x)^11), where C(x) = (1 - sqrt(1 - 4*x))/(2*x) is the o.g.f. for the Catalan numbers A000108. See cross-references for other Fuss-Catalan sequences with o.g.f. 1/x * series reversion (x*C(-x)^k), k = 3 through 11.
A(x)^(1/11) is the o.g.f. for A059968. (End)
D-finite with recurrence: 81*n*(9*n+11)*(9*n+4)*(3*n+2)*(9*n+8)*(9*n+10)*(3*n+1)*(9*n+5)*(9*n+7)*a(n) -800*(10*n+1)*(5*n+1)*(10*n+3)*(5*n+2)*(2*n+1)*(5*n+3)*(10*n+7)*(5*n+4)*(10*n+9)*a(n-1)=0. - R. J. Mathar, Feb 21 2020

Extensions

Corrected by Vincenzo Librandi, Jan 10 2014